Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1242
Τίτλος: Evaluation of Excess Statistical Significance in Meta-analyses of 98 Biomarker Associations with Cancer Risk
Συγγραφείς: Tsilidis, Konstantinos K. 
Papatheodorou, Stefania 
Ioannidis, John P. A. 
Evangelou, Evangelos 
metadata.dc.contributor.other: Τσιλίδης, Κωνσταντίνος
Παπαθεοδώρου, Στεφανία
Ιωαννίδης, Ιωάννης
Ευαγγέλου, Ευάγγελος
Major Field of Science: Medical and Health Sciences
Field Category: Clinical Medicine
Λέξεις-κλειδιά: Cancer risk;Dietary intake;Effect size;Environmental factor;Helicobacter infection;Hepatitis;Inflammation
Ημερομηνία Έκδοσης: 22-Οκτ-2012
Πηγή: Journal of the National Cancer Institute, 2012, vol. 104, no. 24, pp. 1867-1878
Volume: 104
Issue: 24
Start page: 1867
End page: 1878
Περιοδικό: JNCI Journal of the National Cancer Institute 
Περίληψη: Backround Numerous biomarkers have been associated with cancer risk. We assessed whether there is evidence for excess statistical significance in results of cancer biomarker studies, suggesting biases. Methods We systematically searched PubMed for meta-analyses of nongenetic biomarkers and cancer risk. The number of observed studies with statistically significant results was compared with the expected number, based on the statistical power of each study under different assumptions for the plausible effect size. We also evaluated small-study effects using asymmetry tests. All statistical tests were two-sided. Results We included 98 meta-analyses with 847 studies. Forty-three meta-analyses (44%) found nominally statistically significant summary effects (random effects). The proportion of meta-analyses with statistically significant effects was highest for infectious agents (86%), inflammatory (67%), and insulin-like growth factor (IGF)/insulin system (52%) biomarkers. Overall, 269 (32%) individual studies observed nominally statistically significant results. A statistically significant excess of the observed over the expected number of studies with statistically significant results was seen in 20 meta-analyses. An excess of observed vs expected was observed in studies of IGF/insulin (P ≤ .04) and inflammation systems (P ≤ .02). Only 12 meta-analyses (12%) had a statistically significant summary effect size, more than 1000 case patients, and no hints of small-study effects or excess statistical significance; only four of them had large effect sizes, three of which pertained to infectious agents (Helicobacter pylori, hepatitis and human papilloma viruses). Conclusions Most well-documented biomarkers of cancer risk without evidence of bias pertain to infectious agents. Conversely, an excess of statistically significant findings was observed in studies of IGF/insulin and inflammation systems, suggesting reporting biases.
URI: https://hdl.handle.net/20.500.14279/1242
ISSN: 14602105
DOI: 10.1093/jnci/djs437
Rights: © The Author 2012
Type: Article
Affiliation: University of Ioannina 
Stanford University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

64
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

58
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

503
Last Week
0
Last month
4
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα