Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/12013
Τίτλος: Latent subspace modeling of sequential data under the maximum entropy discrimination framework
Συγγραφείς: Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Hidden Markov models;Large-margin principle;Maximum-entropy discrimination;Mean-field inference;Latent variable representation
Ημερομηνία Έκδοσης: 27-Οκτ-2018
Πηγή: Neurocomputing, 2018, vol. 312, pp. 210-217
Volume: 312
Start page: 210
End page: 217
Περιοδικό: Neurocomputing 
Περίληψη: Hidden Markov models (HMMs) are a popular approach for modeling continuous sequential data, typically based on the assumption of Gaussian-distributed observations. A significant issue HMMs with Gaussian conditional densities are confronted with concerns effectively modeling high-dimensional observations, without getting prone to overfitting or singularities. To this end, one can resort to extracting lower-dimensional latent variable representations of the observed high-dimensional data, as part of the inference algorithm of the postulated HMM. Factor analysis (FA) is a well-established linear latent variable scheme that can be employed for this purpose; its functionality consists in modeling the covariances between the elements of multivariate observations under a set of linear assumptions. Recently, it has been proposed that FA can be effectively generalized under an efficient large-margin Bayesian inference perspective, namely maximum entropy discrimination (MED). This work capitalizes on these recent findings to derive an effective HMM-driven sequential data modeling framework for high-dimensional data. Our proposed approach extracts lower-dimensional latent variable representations of observed high-dimensional data, taking into account the large-margin principle. On this basis, it postulates that the data temporal dynamics are conditional to the inferred values of these latent variables. We devise efficient mean-field inference algorithms for our model, and exhibit its advantages through a set of experiments.
ISSN: 09252312
DOI: 10.1016/j.neucom.2018.05.101
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations 10

1
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

379
Last Week
0
Last month
5
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα