Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/11856
Τίτλος: Underwater photogrammetry in very shallow waters: main challenges and caustics effect removal
Συγγραφείς: Agrafiotis, Panagiotis 
Skarlatos, Dimitrios 
Forbes, Timothy 
Poullis, Charalambos 
Skamantzari, Margarita 
Georgopoulos, Andreas 
Major Field of Science: Engineering and Technology
Field Category: Other Engineering and Technologies
Λέξεις-κλειδιά: Caustics;CNN;SfM MVS;Underwater 3D reconstruction
Ημερομηνία Έκδοσης: 30-Μαΐ-2018
Πηγή: ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 2018, Riva del Garda, Italy, 4–7 June
DOI: https://doi.org/10.5194/isprs-archives-XLII-2-15-2018
Project: Advanced VR, iMmersive serious games and Augmented REality as tools to raise awareness and access to European underwater CULTURal heritage 
Περίληψη: In this paper, main challenges of underwater photogrammetry in shallow waters are described and analysed. The very short camera to object distance in such cases, as well as buoyancy issues, wave effects and turbidity of the waters are challenges to be resolved. Additionally, the major challenge of all, caustics, is addressed by a new approach for caustics removal (Forbes et al., 2018) which is applied in order to investigate its performance in terms of SfM-MVS and 3D reconstruction results. In the proposed approach the complex problem of removing caustics effects is addressed by classifying and then removing them from the images. We propose and test a novel solution based on two small and easily trainable Convolutional Neural Networks (CNNs). Real ground truth for caustics is not easily available. We show how a small set of synthetic data can be used to train the network and later transfer the le arning to real data with robustness to intra-class variation. The proposed solution results in caustic-free images which can be further used for other tasks as may be needed.
Description: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, Volume XLII-2, Pages 15-22
URI: https://hdl.handle.net/20.500.14279/11856
Rights: © Authors 2018.
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Concordia University 
National Technical University Of Athens 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
isprs-archives-XLII-2-15-2018.pdfFulltext2 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 5

800
Last Week
2
Last month
1
checked on 22 Δεκ 2024

Download(s)

510
checked on 22 Δεκ 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα