Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/11833
Title: | Mesoporous implantable Pt/SrTiO3:C,N nanocuboids delivering enhanced photocatalytic H2-production activity via plasmon-induced interfacial electron transfer | Authors: | Tamiolakis, Ioannis Liu, Dong Xiao, Fangxing Xie, Jian Papadas, Ioannis T. Salim, Teddy Liu, Bin Zhang, Qichun Choulis, Stelios A. Armatas, Gerasimos S. |
Major Field of Science: | Natural Sciences | Field Category: | Chemical Sciences | Keywords: | Hydrogen production;Mesoporous materials;Nanoparticles;Photocatalysis;Strontium titanate | Issue Date: | 15-Nov-2018 | Source: | Applied Catalysis B: Environmental, 2018, vol. 236, pp. 338-347 | Volume: | 236 | Start page: | 338 | End page: | 347 | Journal: | Applied Catalysis B: Environmental | Abstract: | Band edge engineering of semiconductor nanostructures is one of the most appealing approaches to enhance light absorption, carrier separation and, ultimately, solar to fuel conversion efficiency. In this study, we devise a facile polymer-assisted sol-gel chemical method to prepare highly porous, crystalline implanted SrTiO3 (STO) nanoparticles and demonstrate their performance for photocatalytic hydrogen generation from water. X-ray scattering, electron microscopy, and nitrogen physisorption data corroborate that the as-made catalysts comprise 100-nm-sized nanocuboid particles containing a highly internal porous structure (BET surface area ∼176 m2 g−1) with uniform mesopores (ca. 5.8 nm in diameter). Interestingly, a partial substitution of N and C for O is attained in STO lattice with this synthetic protocol, according to the elemental analysis, and infrared (IR) and X-ray photoelectron spectroscopy (XPS) studies. Compared to STO:C,N, the STO:C,N mesoporous decorated with Pt nanoparticles (ca. 3 nm) present unique attributes that allow for an impressive improvement of up to 74-fold in photocatalytic H2-production activity. By combining UV–vis/NIR optical absorption, photoluminescence, Raman and electrochemical impedance spectroscopy, we show that this improved performance arises from the unique nanostructure, which provides massive surface active sites, and the proper alignment of defect states and conduction band-edge position of the STO:C,N semiconductor with respect to the interband transitions of metal, which permit efficient plasmon-induced interfacial electron transfer between the Pt–STO:C,N junction. | ISSN: | 09263373 | DOI: | 10.1016/j.apcatb.2018.05.036 | Rights: | © Elsevier B.V. | Type: | Article | Affiliation : | University of Crete Nanyang Technological University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
33
checked on Nov 6, 2023
WEB OF SCIENCETM
Citations
31
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s)
360
Last Week
1
1
Last month
1
1
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.