Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1140
Title: L1-optimal estimates for a regression type function in rd
Authors: Yatracos, Yannis G. 
Major Field of Science: Social Sciences
Keywords: Regression analysis;Convergence
Issue Date: Feb-1992
Source: Journal of Multivariate Analysis, 1992, vol. 40, no.2, pp. 213-220
Volume: 40
Issue: 2
Start page: 213
End page: 220
Journal: Journal of Multivariate Analysis 
Abstract: Let X1, X2, ..., Xn be random vectors that take values in a compact set in Rd, d ≥ 1. Let Y1, Y2, ..., Yn be random variables ("the responses") which conditionally on X1 = x1, ..., Xn = xn are independent with densities f(y | xi, θ(xi)), i = 1, ..., n. Assuming that θ lives in a sup-norm compact space Θq,d of real valued functions, an optimal L1-consistent estimator θ ̇n of θ is constructed via empirical measures. The rate of convergence of the estimator to the true parameter θ depends on Kolmogorov's entropy of Θq,d.
URI: https://hdl.handle.net/20.500.14279/1140
ISSN: 0047259X
DOI: 10.1016/0047-259X(92)90023-9
Rights: © Elsevier
Type: Article
Affiliation : Université de Montréal 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

SCOPUSTM   
Citations

3
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

3
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

595
Last Week
2
Last month
0
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.