Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/10986
Τίτλος: Part II: Thermal analysis of naturally ventilated BIPV system: Modeling and Simulation
Συγγραφείς: Agathokleous, Rafaela 
Kalogirou, Soteris A. 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: BIPV;Natural ventilation;Photovoltaics;Thermal behaviour
Ημερομηνία Έκδοσης: 15-Ιου-2018
Πηγή: Solar Energy, 2018, vol. 169, pp. 682-691
Volume: 169
Start page: 682
End page: 691
Περιοδικό: Solar Energy 
Περίληψη: This is the second part of a two-part study based on the thermal behaviour of a naturally ventilated BIPV systems. In the first part an experimental analysis of the thermal behaviour of a naturally ventilated BIPV system is presented and two new correlations for the estimation of the convective heat transfer coefficients in the air gap between the PV panel and a second skin are given, for windy and non-windy conditions. The present study (second part) presents a simulation based thermal analysis of a naturally ventilated vertical BIPV system. The simulation model is created using the developed equations for the estimation of the convective heat transfer coefficients presented in the first part of the present study, and the model is validated with the use of experimental data shown in the first part as well. The experimental based correlations are imported in the mathematical model, in order to be able to investigate the effect of other parameters on the thermal behaviour of the system such as the height of the system, the size of the air gap and the air velocity in the duct. These parameters are not easy to be investigated experimentally and their investigation would be very time consuming. The simulation model has a good agreement with the experimental results. The results shown that an air gap of 0.1 m can create adequate air flow on naturally ventilated systems and can ensure low PV temperatures to avoid efficiency decrease. This can be done when the air gap has bottom and top openings to allow air circulation. In taller systems, the temperatures are higher and there is a drop of the efficiency of the system.
URI: https://hdl.handle.net/20.500.14279/10986
ISSN: 0038092X
DOI: 10.1016/j.solener.2018.02.057
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

31
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

29
Last Week
2
Last month
0
checked on 30 Σεπ 2023

Page view(s) 50

377
Last Week
2
Last month
11
checked on 11 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα