Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/10957
Τίτλος: | Can the crowd tell how I feel? Trait empathy and ethnic background in a visual pain judgment task | Συγγραφείς: | Matsangidou, Maria Otterbacher, Jahna Ang, Chee Siang Zaphiris, Panayiotis |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Crowdsourcing;Distress;Empathy;Ethnicity;Image metadata;Pain | Ημερομηνία Έκδοσης: | 1-Αυγ-2018 | Πηγή: | Universal Access in the Information Society, 2018, vol. 17, no. 3, pp. 649-661 | Volume: | 17 | Issue: | 3 | Start page: | 649 | End page: | 661 | Περιοδικό: | Universal Access in the Information Society | Περίληψη: | Many advocate for artificial agents to be empathic. Crowdsourcing could help, by facilitating human-in-the-loop approaches and data set creation for visual emotion recognition algorithms. Although crowdsourcing has been employed successfully for a range of tasks, it is not clear how effective crowdsourcing is when the task involves subjective rating of emotions. We examined relationships between demographics, empathy, and ethnic identity in pain emotion recognition tasks. Amazon MTurkers viewed images of strangers in painful settings, and tagged subjects’ emotions. They rated their level of pain arousal and confidence in their responses, and completed tests to gauge trait empathy and ethnic identity. We found that Caucasian participants were less confident than others, even when viewing other Caucasians in pain. Gender correlated to word choices for describing images, though not to pain arousal or confidence. The results underscore the need for verified information on crowdworkers, to harness diversity effectively for metadata generation tasks. | URI: | https://hdl.handle.net/20.500.14279/10957 | ISSN: | 16155289 | DOI: | 10.1007/s10209-018-0611-y | Rights: | © The Author(s) | Type: | Article | Affiliation: | University of Kent at Canterbury Open University Cyprus Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
10.1007%2Fs10209-018-0611-y.pdf | Fulltext | 918.99 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
4
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
50
2
Last Week
0
0
Last month
1
1
checked on 29 Οκτ 2023
Page view(s)
463
Last Week
0
0
Last month
4
4
checked on 30 Ιαν 2025
Download(s)
84
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα