Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/10536
Τίτλος: | Age interval and gender prediction using PARAFAC2 and SVMs based on visual and aural features | Συγγραφείς: | Pantraki, Evangelia Kotropoulos, Constantine L. Lanitis, Andreas |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | PARAFAC2;Automatic prediction;TCDSA database | Ημερομηνία Έκδοσης: | 1-Ιου-2017 | Πηγή: | IET Biometrics, 2017, vol. 6, no. 4, pp. 290-298 | Volume: | 6 | Issue: | 4 | Start page: | 290 | End page: | 298 | Περιοδικό: | IET Biometrics | Περίληψη: | Parallel factor analysis 2 (PARAFAC2) is employed to reduce the dimensions of visual and aural features and provide ranking vectors. Subsequently, score level fusion is performed by applying a support vector machine (SVM) classifier to the ranking vectors derived by PARAFAC2 to make gender and age interval predictions. The aforementioned procedure is applied to the Trinity College Dublin Speaker Ageing database, which is supplemented with face images of the speakers and two single-modality benchmark datasets. Experimental results demonstrate the advantage of using combined aural and visual features for both prediction tasks. | URI: | https://hdl.handle.net/20.500.14279/10536 | ISSN: | 20474938 | DOI: | 10.1049/iet-bmt.2016.0122 | Rights: | © The Institution of Engineering and Technology | Type: | Article | Affiliation: | Cyprus University of Technology Aristotle University of Thessaloniki |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
3
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
3
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
499
Last Week
0
0
Last month
2
2
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα