Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/10536
Τίτλος: Age interval and gender prediction using PARAFAC2 and SVMs based on visual and aural features
Συγγραφείς: Pantraki, Evangelia 
Kotropoulos, Constantine L. 
Lanitis, Andreas 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: PARAFAC2;Automatic prediction;TCDSA database
Ημερομηνία Έκδοσης: 1-Ιου-2017
Πηγή: IET Biometrics, 2017, vol. 6, no. 4, pp. 290-298
Volume: 6
Issue: 4
Start page: 290
End page: 298
Περιοδικό: IET Biometrics 
Περίληψη: Parallel factor analysis 2 (PARAFAC2) is employed to reduce the dimensions of visual and aural features and provide ranking vectors. Subsequently, score level fusion is performed by applying a support vector machine (SVM) classifier to the ranking vectors derived by PARAFAC2 to make gender and age interval predictions. The aforementioned procedure is applied to the Trinity College Dublin Speaker Ageing database, which is supplemented with face images of the speakers and two single-modality benchmark datasets. Experimental results demonstrate the advantage of using combined aural and visual features for both prediction tasks.
URI: https://hdl.handle.net/20.500.14279/10536
ISSN: 20474938
DOI: 10.1049/iet-bmt.2016.0122
Rights: © The Institution of Engineering and Technology
Type: Article
Affiliation: Cyprus University of Technology 
Aristotle University of Thessaloniki 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

3
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 20

3
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

499
Last Week
0
Last month
2
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα