Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/10536
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Pantraki, Evangelia | - |
dc.contributor.author | Kotropoulos, Constantine L. | - |
dc.contributor.author | Lanitis, Andreas | - |
dc.date.accessioned | 2017-11-20T11:43:08Z | - |
dc.date.available | 2017-11-20T11:43:08Z | - |
dc.date.issued | 2017-07-01 | - |
dc.identifier.citation | IET Biometrics, 2017, vol. 6, no. 4, pp. 290-298 | en_US |
dc.identifier.issn | 20474938 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/10536 | - |
dc.description.abstract | Parallel factor analysis 2 (PARAFAC2) is employed to reduce the dimensions of visual and aural features and provide ranking vectors. Subsequently, score level fusion is performed by applying a support vector machine (SVM) classifier to the ranking vectors derived by PARAFAC2 to make gender and age interval predictions. The aforementioned procedure is applied to the Trinity College Dublin Speaker Ageing database, which is supplemented with face images of the speakers and two single-modality benchmark datasets. Experimental results demonstrate the advantage of using combined aural and visual features for both prediction tasks. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | IET Biometrics | en_US |
dc.rights | © The Institution of Engineering and Technology | en_US |
dc.subject | PARAFAC2 | en_US |
dc.subject | Automatic prediction | en_US |
dc.subject | TCDSA database | en_US |
dc.title | Age interval and gender prediction using PARAFAC2 and SVMs based on visual and aural features | en_US |
dc.type | Article | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | Aristotle University of Thessaloniki | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | Cyprus | en_US |
dc.country | Greece | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1049/iet-bmt.2016.0122 | en_US |
dc.relation.issue | 4 | en_US |
dc.relation.volume | 6 | en_US |
cut.common.academicyear | 2016-2017 | en_US |
dc.identifier.spage | 290 | en_US |
dc.identifier.epage | 298 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 2047-4946 | - |
crisitem.journal.publisher | IEEE | - |
crisitem.author.dept | Department of Multimedia and Graphic Arts | - |
crisitem.author.faculty | Faculty of Fine and Applied Arts | - |
crisitem.author.orcid | 0000-0001-6841-8065 | - |
crisitem.author.parentorg | Faculty of Fine and Applied Arts | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
3
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
3
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
538
Last Week
0
0
Last month
31
31
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα