Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/10506
DC FieldValueLanguage
dc.contributor.authorThon, Anika-
dc.contributor.authorTeichgräber, Ulf-
dc.contributor.authorTennstedt-Schenk, Cornelia-
dc.contributor.authorHadjidemetriou, Stathis-
dc.contributor.authorWinzler, Sven-
dc.contributor.authorMalich, Ansgar-
dc.contributor.authorPapageorgiou, Ismini-
dc.date.accessioned2017-11-15T15:43:37Z-
dc.date.available2017-11-15T15:43:37Z-
dc.date.issued2017-10-
dc.identifier.citationPLoS ONE, 2017, vol. 12, no. 10en_US
dc.identifier.issn19326203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/10506-
dc.description.abstractProstate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging (mpMRI) is a current challenge for the development of computer-aided detection (CAD) tools. An innovative CAD-software (Watson Elementary (TM)) was proposed to achieve high sensitivity and specificity, as well as to allege a correlate to Gleason grade. Aim/Objective To assess the performance of Watson Elementary (TM) in automated PCa diagnosis in our hospital's database of MRI-guided prostate biopsies. Methods The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61 +/- 6.64 year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps and dynamic contrast enhancement series. Watson Elementary (TM) utilizes signal intensity, diffusion properties and kinetic profile to compute a proportional Gleason grade predictor, termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity and specificity to classify suspect lesions and (ii) the MAI correlation with the histopathological ground truth. Results The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign lesions with equal probability (P 0.06,chi(2) test). Accordingly, receiver operating characteristic analysis suggests a poor predictive value for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance of board certified observers. Moreover, MAI revealed no significant correlation with Gleason grade (P 0.60, Pearson's correlation). Conclusion The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset. Targeted prostate biopsy and histology remains the gold standard for prostate cancer diagnosis.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPLoS ONEen_US
dc.rights© Thon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_US
dc.subjectMultiparametric magnetic resonance imaging (mpMRI)en_US
dc.subjectRadiotherapyen_US
dc.subjectLocalizationen_US
dc.subjectB-Valueen_US
dc.titleComputer aided detection in prostate cancer diagnostics: A promising alternative to biopsy? A retrospective study from 104 lesions with histological ground truthen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationFriedrich Schiller University of Jenaen_US
dc.collaborationSuedharz Hospital Nordhausenen_US
dc.collaborationUniversity of Bernen_US
dc.subject.categoryOther Engineering and Technologiesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryGermanyen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1371/journal.pone.0185995en_US
dc.relation.issue10en_US
dc.relation.volume12en_US
cut.common.academicyear2017-2018en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1932-6203-
crisitem.journal.publisherPloS-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
Hadjidemetriou.pdf12.03 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

17
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 50

391
Last Week
0
Last month
7
checked on Dec 22, 2024

Download(s)

106
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.