Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/10093
Τίτλος: | Downscaling CHIRPS precipitation data: an artificial neural network modelling approach | Συγγραφείς: | Retalis, Adrianos Tymvios, Filippos S. Katsanos, Dimitrios K. Michaelides, Silas |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Climate models;Deep neural networks;Gages;Geostationary satellites;Neural networks;Precipitation (meteorology);Rain gages;Satellite imagery | Ημερομηνία Έκδοσης: | 3-Ιου-2017 | Πηγή: | International Journal of Remote Sensing, 2017, vol. 38, no. 13, pp. 3943-3959 | Volume: | 38 | Issue: | 13 | Start page: | 3943 | End page: | 3959 | Περιοδικό: | International Journal of Remote Sensing | Περίληψη: | The Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) is a high-resolution climatic database of precipitation embracing monthly precipitation climatology, quasi-global geostationary thermal infrared satellite observations from the Tropical Rainfall Measuring Mission (TRMM) 3B42 product, atmospheric model rainfall fields from National Oceanic and Atmospheric Administration–Climate Forecast System (NOAA CFS), and precipitation observations from various sources. The key difference with all other existing precipitation databases is the high-resolution of the available data, since the inherent 0.05° resolution is a rather unique threshold. Monthly data for the period from January 1999 to December 2012 were processed in the present research. The main aim of this article is to propose a novel downscaling method in order to attain high resolution (1 km × 1 km) precipitation datasets, by correlating the CHIRPS dataset with altitude information and the normalized difference vegetation index from satellite images at 1 km × 1 km, utilizing artificial neural network models. The final result was validated with precipitation measurements from the rain gauge network of the Cyprus Department of Meteorology. | URI: | https://hdl.handle.net/20.500.14279/10093 | ISSN: | 13665901 | DOI: | 10.1080/01431161.2017.1312031 | Rights: | © Taylor & Francis | Type: | Article | Affiliation: | National Observatory of Athens Cyprus Department of Meteorology The Cyprus Institute Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
26
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
24
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
433
Last Week
0
0
Last month
5
5
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα