Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/10040
Τίτλος: A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps
Συγγραφείς: Christoforou, Andreas 
Andreou, Andreas S. 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Cycles;Multi-layer fuzzy cognitive maps;Static and dynamic analysis;Simulations;Node strength
Ημερομηνία Έκδοσης: 5-Απρ-2017
Πηγή: Neurocomputing, 2017, vol. 232, pp. 133-145
Volume: 232
Start page: 133
End page: 145
Περιοδικό: Neurocomputing 
Περίληψη: Fuzzy Cognitive Maps (FCMs) have progressively become a well-researched and extensively used set of tools for modeling real-world, complex decision making problems. Despite their fast growth, researchers and modelers are faced with the lack of a framework to analyze such models and help them assess their performance and efficiency. Moreover, when multi-layered FCM (ML-FCM) structures are used, which consist of a rich number of nodes and interconnections organized in different layers, this need becomes imperative. The present paper introduces an integrated analysis framework and a series of steps to gather useful static and dynamic information regarding ML-FCM models, as well as to interpret the corresponding results. The proposed type of analysis provides significant information on the model's complexity, the strength of its nodes and its tendency to promote or inhibit activation levels as a result of the presence of positive or negative cycles. In addition, it offers the means to perform dynamic analysis in the form of what-if scenarios. The framework is described and assessed using real-world problems from the engineering and political decision-making domains, which demonstrate its power and usefulness.
URI: https://hdl.handle.net/20.500.14279/10040
ISSN: 09252312
DOI: 10.1016/j.neucom.2016.09.115
Rights: © Elsevier
Type: Article
Affiliation: University of Patras 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

35
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 20

27
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

441
Last Week
0
Last month
7
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα