Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9886
DC FieldValueLanguage
dc.contributor.authorSingh, Ranbir R.-
dc.contributor.authorLee, Jaewook-
dc.contributor.authorKim, Min-
dc.contributor.authorKeivanidis, Panagiotis E.-
dc.contributor.authorCho, Kilwon-
dc.date.accessioned2017-02-23T12:47:02Z-
dc.date.available2017-02-23T12:47:02Z-
dc.date.issued2017-01-
dc.identifier.citationJournal of Materials Chemistry A, 2017, vol. 5, no. 1, pp. 210-220en_US
dc.identifier.issn20507496-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9886-
dc.description.abstractHerein we present the design of three perylene diimide (PDI) derivatives with different molecular geometries; namely the monomeric PDI1, the bay-linked PDI2 dimer, and the bay-linked PDI4 tetramer with a 9,9′-spirobifluorene core that are utilized as electron acceptors in non-fullerene organic solar cells (OSCs). In all cases the PTB7-Th polymer is used as the electron donor. Among the three PTB7-Th:PDI systems, the highest power conversion efficiency (PCE) is obtained by the PDI4-based OSC device that exhibits a maximum PCE = 6.44% followed by the PDI2-based (PCE = 5.32%) and PDI1-based (PCE = 2.48%) devices. The detailed study of the photoluminescence quenching, morphology and temperature-dependent charge transport properties of the three systems reveal that the highest PCE of PTB7-Th:PDI4 is a consequence of the three-dimensional (3D) molecular architecture of PDI4 that tunes energetic disorder in the PDI phase and contributes to the improvement of electron transport. Transient photovoltage characterization experiments further identify that the actual effect coming from the 3D molecular geometry of the PDI4 acceptor on PCE is the minimization of non-geminate charge recombination losses. This study provides updated guidelines for optimizing further the molecular structure of 3D small molecular electron acceptors that can be used in highly efficient non-fullerene OSCs.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Materials Chemistry Aen_US
dc.rights© The Royal Society of Chemistryen_US
dc.subjectSolar cellsen_US
dc.subjectFullerenesen_US
dc.subjectOrganic photovoltaicsen_US
dc.titleControl of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cellen_US
dc.typeArticleen_US
dc.collaborationPohang University of Science and Technologyen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryChemical Sciencesen_US
dc.journalsSubscriptionen_US
dc.countrySouth Koreaen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1039/C6TA08870Hen_US
dc.relation.issue1en_US
dc.relation.volume5en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage210en_US
dc.identifier.epage220en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.journal.journalissn2050-7496-
crisitem.journal.publisherRoyal Society of Chemistry-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-5336-249X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

75
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

75
Last Week
0
Last month
1
checked on Oct 29, 2023

Page view(s) 50

364
Last Week
3
Last month
14
checked on May 13, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.