Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9813
DC FieldValueLanguage
dc.contributor.authorMassi Pavan, Alessandro-
dc.contributor.authorMellit, Adel-
dc.contributor.authorDe Pieri, Davide-
dc.contributor.authorKalogirou, Soteris A.-
dc.date.accessioned2017-02-20T12:36:57Z-
dc.date.available2017-02-20T12:36:57Z-
dc.date.issued2013-08-
dc.identifier.citationApplied Energy, 2013, no. 108, pp. 392-401en_US
dc.identifier.issn03062619-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9813-
dc.description.abstractThis paper presents a comparison between two different techniques for the determination of the effect of soiling on large scale photovoltaic plants. Four Bayesian Neural Network (BNN) models have been developed in order to calculate the performance at Standard Test Conditions (STCs) of two plants installed in Southern Italy before and after a complete clean-up of their modules. The differences between the STC power before and after the clean-up represent the losses due to the soiling effect. The results obtained with the BNN models are compared with the ones calculated with a well known regression model. Although the soiling effect can have a significant impact on the PV system performance and specific models developed are applicable only to the specific location in which the testing was conducted, this study is of great importance because it suggests a procedure to be used in order to give the necessary confidence to operation and maintenance personnel in applying the right schedule of clean-ups by making the right compromise between washing cost and losses in energy production.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Energyen_US
dc.rights© Elsevieren_US
dc.subjectBayesian NNen_US
dc.subjectLarge scale photovoltaic planten_US
dc.subjectMaintenanceen_US
dc.subjectPollutionen_US
dc.subjectPolynomial regressionen_US
dc.subjectSoilingen_US
dc.titleA comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plantsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Triesteen_US
dc.collaborationUniversity of Jijelen_US
dc.collaborationUnité de Développement des Équipements Solairesen_US
dc.collaborationSuntrust S.r.l.en_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationInternational Center for Theoretical Physicsen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryItalyen_US
dc.countryAlgeriaen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.apenergy.2013.03.023en_US
dc.relation.volume108en_US
cut.common.academicyear2013-2014en_US
dc.identifier.spage392en_US
dc.identifier.epage401en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0306-2619-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 5

80
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

75
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

462
Last Week
2
Last month
3
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.