Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/9710
Title: | Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements | Authors: | Kokkalis, Panayotis Papayannis, Alexandros D. Amiridis, Vassilis Mamouri, Rodanthi-Elisavet Veselovskĭĭ, Igor A. Kolgotin, Alexei V. Tsaknakis, Georgios Kristiansen, Nina I. Stohl, Andreas Mona, Lucia |
Major Field of Science: | Natural Sciences | Field Category: | Earth and Related Environmental Sciences | Keywords: | Dispersion model flexpart;In-situ measurements;Multiwavelength lidar;Earlinet project;Saharan dust;Aerosol extinction;Backscatter lidar;Ash dispersion;Desert dust;Plume | Issue Date: | 17-Sep-2013 | Source: | Atmospheric Chemistry and Physics, 2013, vol. 13, no. 18, pp. 9303-9320 | Volume: | 13 | Issue: | 18 | Start page: | 9303 | End page: | 9320 | DOI: | 10.5194/acp-13-9303-2013 | Journal: | Atmospheric Chemistry and Physics | Abstract: | Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21-24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13-0.38 μm and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the mixing of aged volcanic particles with other aerosol types of local origin. Finally, the LIRIC (LIdar/Radiometer Inversion Code) lidar/sunphotometric combined inversion algorithm has been applied in order to retrieve particle concentrations. These have been compared with FLEXPART simulations of the vertical distribution of ash showing good agreement concerning not only the geometrical properties of the volcanic particles layers but also the particles mass concentration. | URI: | https://hdl.handle.net/20.500.14279/9710 | ISSN: | 16807316 | DOI: | 10.5194/acp-13-9303-2013 | Rights: | © Author(s) CC Attribution 3.0 License | Type: | Article | Affiliation : | National Technical University Of Athens National Observatory of Athens Cyprus University of Technology Physics Instrumentation Center of General Physics Institute Norwegian Institute for Air Research CNR - National Research Council of Italy |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Mamouri.pdf | Article | 2.28 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
26
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
20
27
Last Week
0
0
Last month
1
1
checked on Oct 29, 2023
Page view(s)
453
Last Week
1
1
Last month
7
7
checked on Jan 5, 2025
Download(s)
160
checked on Jan 5, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.