Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/9637
Title: | Adaptive Monte Carlo for Bayesian variable selection in regression models | Authors: | Lamnisos, Demetris Griffin, Jim E. Steel, Mark |
Major Field of Science: | Medical and Health Sciences | Field Category: | Health Sciences | Keywords: | Linear regression;Metropolis-within-Gibbs;Probit regression | Issue Date: | 20-Sep-2013 | Source: | Journal of Computational and Graphical Statistics, 2013, vol. 22, no. 3, pp. 729-748 | Volume: | 22 | Issue: | 3 | Start page: | 729 | End page: | 748 | Journal: | Journal of Computational and Graphical Statistics | Abstract: | This article describesmethods for efficient posterior simulation for Bayesian variable selection in generalized linear models with many regressors but few observations. The algorithms use a proposal on model space that contains a tuneable parameter. An adaptive approach to choosing this tuning parameter is described that allows automatic, efficient computation in these models. The method is applied to examples from normal linear and probit regression. Relevant code and datasets are posted online as supplementary materials. | URI: | https://hdl.handle.net/20.500.14279/9637 | ISSN: | 10618600 | DOI: | 10.1080/10618600.2012.694756 | Rights: | © Taylor & Francis | Type: | Article | Affiliation : | Cyprus University of Technology University of Kent at Canterbury University of Warwick |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
18
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
17
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
446
Last Week
0
0
Last month
1
1
checked on Dec 3, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.