Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9590
DC FieldValueLanguage
dc.contributor.authorChristodoulou, Panayiotis-
dc.contributor.authorLestas, Marios-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2017-02-10T12:10:06Z-
dc.date.available2017-02-10T12:10:06Z-
dc.date.issued2014-09-01-
dc.identifier.citationEngineering Intelligent Systems, 2014, vol. 22, no. 3-4, pp. 177-190en_US
dc.identifier.issn14728915-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9590-
dc.description.abstractThis paper proposes a dynamic Recommender System for the Web, which uses Entropy based Hard and Fuzzy K-modes algorithms to group items in clusters according to certain data features. Recommendations are then produced from those clusters that have their centers closer to the user's search preferences. The system starts operating with a learning session which allows the user to conduct various searches in order to identify her/his initial preferences. The ongoing searching behavior of the user is dynamically recorded and inserted in the recommendation engine, adjusting user preferences in real-time and enabling the system to maintain high levels of accuracy. The proposed approach is validated on a movie dataset containing information on stars, categories and production companies, with the user being able to search for an item based on one or more of these features. The results indicate successful performance for the two clustering algorithms, while a short comparison to variations of the KNN algorithm suggests superiority of the proposed approaches.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Intelligent Systemsen_US
dc.rights© CRL Publishingen_US
dc.subjectEntropyen_US
dc.subjectHard and fuzzy K-modes clusteringen_US
dc.subjectRecommender systemsen_US
dc.titleApplying hard and fuzzy K-modes clustering for dynamic Web recommendationsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationFrederick Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.issue3-4en_US
dc.relation.volume22en_US
cut.common.academicyear2014-2015en_US
dc.identifier.spage177en_US
dc.identifier.epage190en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1472-8915-
crisitem.journal.publisherCRL-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 20

491
Last Week
2
Last month
6
checked on Dec 22, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.