Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9521
DC FieldValueLanguage
dc.contributor.authorItskos, Grigorios-
dc.contributor.authorOthonos, Andreas-
dc.contributor.authorChoulis, Stelios A.-
dc.contributor.authorIliopoulos, Eleftherios-
dc.contributor.otherΧούλης, Στέλιος-
dc.date.accessioned2017-02-08T06:44:29Z-
dc.date.available2017-02-08T06:44:29Z-
dc.date.issued2015-12-01-
dc.identifier.citationJournal of Chemical Physics, 2015, Volume 143, Issue 21, Article number 214701en_US
dc.identifier.issn00219606-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9521-
dc.description.abstractA systematic investigation of Förster resonant energy transfer (FRET) is reported within a hybrid prototype structure based on nitride single quantum well (SQW) donors and light emitting polymer acceptors. Self-consistent Schrödinger-Poisson modeling and steady-state and time-resolved photoluminescence experiments were initially employed to investigate the influence of a wide structural parameter space on the emission quantum yield of the nitride component. The optimized SQW heterostructures were processed into hybrid structures with spin-casted overlayers of polyfluorenes. The influence of important unexplored aspects of the inorganic heterostructure such as SQW confinement, content, and doping on the dipole-dipole coupling was probed. Competing mechanisms to the FRET process associated with interfacial recombination and charge transfer have been studied and their implications to device applications exploiting FRET across heterointerfaces have been discussed.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2015 AIP Publishing LLC.en_US
dc.subjectLight-emitting-diodesen_US
dc.subjectOptical-excitationsen_US
dc.subjectColor-conversionen_US
dc.subjectOrganic materialen_US
dc.subjectNanostructuresen_US
dc.subjectDevicesen_US
dc.subjectSurfaceen_US
dc.subjectEfficiencyen_US
dc.subjectOverlayeren_US
dc.subjectEmissionen_US
dc.titleFörster resonant energy transfer from an inorganic quantum well to a molecular material: Unexplored aspects, losses, and implications to applicationsen_US
dc.typeArticleen_US
dc.doi10.1063/1.4935963en_US
dc.collaborationUniversity of Cyprusen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Creteen_US
dc.subject.categoryPhysical Sciencesen_US
dc.journalsSubscription Journalen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-7899-6296-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

434
Last Week
0
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.