Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/9506
Title: | Localized surface plasmon fiber device coated with carbon nanotubes for the specific detection of CO2 | Authors: | Allsop, Thomas P. Arif, Raz N. Neal, Ron M. Kalli, Kyriacos Kundrát, Vojtěch Rozhin, A. G. Culverhouse, Phil Webb, David J. |
metadata.dc.contributor.other: | Καλλή, Κυριάκος | Major Field of Science: | Engineering and Technology | Field Category: | Nano-Technology | Keywords: | Carbon nanotubes;Fiber optic sensors;Gas-sensing;Localized surface plasmons;Nanostructured thin film | Issue Date: | 11-Aug-2015 | Source: | Proceedings of SPIE - The International Society for Optical Engineering, 9555, art. no. 95550S; Optical Sensing, Imaging, and Photon Counting, San Diego, United States, 11 August 2015 through 13 August 2015 | DOI: | 10.1117/12.2187557 | Conference: | Optical Sensing, Imaging, and Photon Counting | Abstract: | We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of /"n ∼-6200nm/RIU and "™/"n ∼5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. | ISBN: | 978-162841721-0 | ISSN: | 0277-786X | DOI: | 10.1117/12.2187557 | Rights: | © SPIE | Type: | Conference Papers | Affiliation : | Aston University University of Plymouth Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Appears in Collections: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
Page view(s) 50
448
Last Week
1
1
Last month
3
3
checked on Dec 22, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.