Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9473
DC FieldValueLanguage
dc.contributor.authorAluicio-Sarduy, Eduardo-
dc.contributor.authorSingh, Ranbir R.-
dc.contributor.authorKan, Zhipeng-
dc.contributor.authorYe, Tengling-
dc.contributor.authorBaidak, Aliaksandr-
dc.contributor.authorCalloni, Alberto-
dc.contributor.authorBerti, Giulia-
dc.contributor.authorDuò, Lamberto-
dc.contributor.authorIosifidis, Agathaggelos-
dc.contributor.authorBeaupré, Serge-
dc.contributor.authorLeclerc, Mario-
dc.contributor.authorButt, Hans Jürgen-
dc.contributor.authorFloudas, George A.-
dc.contributor.authorKeivanidis, Panagiotis E.-
dc.date.accessioned2017-02-06T06:32:09Z-
dc.date.available2017-02-06T06:32:09Z-
dc.date.issued2015-03-30-
dc.identifier.citationACS Applied Materials and Interfaces, 2015, vol. 7, no. 16, pp. 8687-8698.en_US
dc.identifier.issn19448244-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9473-
dc.description.abstractThe performance of organic photovoltaic devices (OPV) with nanostructured polymer:perylene diimide (PDI) photoactive layers approaches the levels of the corresponding polymer:fullerene systems. Nevertheless, a coherent understanding of the difficulty for PDI-based OPV devices to deliver high power conversion efficiencies remains elusive. Here we perform a comparative study of a set of four different polymer:PDI OPV model systems. The different device performances observed are attributed to differences in the nanostructural motif of these composites, as determined by wide-angle X-ray scattering (WAXS) measurements. Long-range structural order in the PDI domain dictates (i) the stabilization energy and (ii) the concentration of the PDI excimers in the composites. The quenching of the PDI excimer photoluminescence (PL) is found to be insensitive to the former, but it depends on the latter. High PL quenching occurs for the low concentration of PDI excimers that are formed in PDI columns with a length comparable to the PDI excimer diffusion length. The stabilization of the PDI excimer state increases as the long-range order in the PDI domains improves. The structural order of the PDI domains primarily affects charge transport. Electron mobility reduces as the size of the PDI domain increases, suggesting that well-ordered PDI domains suffer from poor electronic connectivity. WAXS further reveals the presence of additional intermolecular PDI interactions, other than the direct face-to-face intermolecular coupling, that introduce a substantial energetic disorder in the polymer:PDI composites. Conventional device architectures with hole-collecting ITO/PEDOT:PSS bottom electrodes are compared with inverted device architectures bearing bottom electron-collecting electrodes of ITO/ZnO. In all cases the ZnO-functionalized devices surpass the performance of the conventional device analogues. X-ray photoelectron spectroscopy explains that in PEDOT:PSS-functionalized devices, the PDI component preferentially segregates closer to the hydrophilic PEDOT:PSS electrode, thus impeding the efficient charge extraction and limiting device photocurrent.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofACS Applied Materials & Interfacesen_US
dc.rights© American Chemical Society.en_US
dc.subjectCharge extractionen_US
dc.subjectNon-fullerene acceptorsen_US
dc.subjectOrganic photovoltaicsen_US
dc.subjectPerylene diimideen_US
dc.subjectVertical phase separationen_US
dc.titleElucidating the impact of molecular packing and device architecture on the performance of nanostructured perylene diimide solar cellsen_US
dc.typeArticleen_US
dc.doi10.1021/acsami.5b00827en_US
dc.collaborationCentre for Nanoscience and Technology@PoliMien_US
dc.collaborationPolitecnico di Milanoen_US
dc.collaborationUniversite Lavalen_US
dc.collaborationMax Planck Instituteen_US
dc.collaborationUniversity of Ioanninaen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationHarbin Institute of Technologyen_US
dc.collaborationWestlakes Science and Technology Parken_US
dc.subject.categoryNano-Technologyen_US
dc.journalsSubscriptionen_US
dc.countryItalyen_US
dc.countryCanadaen_US
dc.countryGermanyen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.countryChinaen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1021/acsami.5b00827en_US
dc.relation.issue16en_US
dc.relation.volume7en_US
cut.common.academicyear2014-2015en_US
dc.identifier.spage8687en_US
dc.identifier.epage8698en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1944-8252-
crisitem.journal.publisherAmerican Chemical Society-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-5336-249X-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

21
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

19
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

407
Last Week
1
Last month
2
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.