Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9450
DC FieldValueLanguage
dc.contributor.authorDaskalakis, Vangelis-
dc.contributor.authorCharalambous, Fevronia-
dc.contributor.authorDemetriou, Constantinos-
dc.contributor.authorGeorgiou, Georgia-
dc.date.accessioned2017-02-03T12:18:34Z-
dc.date.available2017-02-03T12:18:34Z-
dc.date.issued2015-01-01-
dc.identifier.citationRSC Advances, 2015, vol. 5, no. 78, pp. 63240-63251en_US
dc.identifier.issn20462069-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9450-
dc.description.abstract.The creation of new atmospheric particles via nucleation is an important source of the particles from which Cloud Condensation Nuclei (CCN) are formed. The new particle formation (NPF) process can significantly alter the atmospheric aerosol size distribution and thus CCN activation. CCN are associated with boundary layer evolution, cloud formation, and cloud properties like albedo, or the lifetime. Water vapor condenses upon atmospheric particulates that grow in size to form cloud droplets. Despite its importance, NPF is poorly understood at the atomic level and the ns time scale especially when organic matter (OM) effects are included. Here we employ molecular dynamics simulations on ammonium chloride wet aerosol models. Salt within the aerosol is found to transition between different morphologies-brine and crystalline-depending on the presence of OM on the surface of the occurring particle. Particle number, size and growth dynamics are associated with this variant salt morphology. Our findings elucidate the dynamics of NPF and particle growth in the presence of OM.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRSC Advancesen_US
dc.rights© The Royal Society of Chemistryen_US
dc.subjectAerosolsen_US
dc.subjectAtmospheric aerosolsen_US
dc.subjectBiogeochemistryen_US
dc.subjectBiological materialsen_US
dc.subjectBoundary layersen_US
dc.subjectMolecular dynamicsen_US
dc.titleSurface-active organic matter induces salt morphology transitions during new atmospheric particle formation and growthen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryEarth and Related Environmental Sciencesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1039/c5ra09187jen_US
dc.relation.issue78en_US
dc.relation.volume5en_US
cut.common.academicyear2015-2016en_US
dc.identifier.spage63240en_US
dc.identifier.epage63251en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Chemical Engineering-
crisitem.author.facultyFaculty of Geotechnical Sciences and Environmental Management-
crisitem.author.orcid0000-0001-8870-0850-
crisitem.author.parentorgFaculty of Geotechnical Sciences and Environmental Management-
crisitem.journal.journalissn2046-2069-
crisitem.journal.publisherRoyal Society of Chemistry-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

435
Last Week
1
Last month
6
checked on Feb 1, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.