Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9403
DC FieldValueLanguage
dc.contributor.authorTheodosiou, Zenonas-
dc.date.accessioned2017-02-02T10:17:54Z-
dc.date.available2017-02-02T10:17:54Z-
dc.date.issued2015-
dc.identifier.citationElectronic Letters on Computer Vision and Image Analysis, 2015, vol. 14, no. 3, pp. 21-23.en_US
dc.identifier.issn15775097-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9403-
dc.description.abstractWith the advent of cheap digital recording and storage devices and the rapidly increasing popularity of online social networks that make extended use of visual information, like Facebook and Instagram, image retrieval regained great attention among the researchers in the areas of image indexing and retrieval. Image retrieval methods are mainly falling into content-based and text-based frameworks. Although content-based image retrieval has attracted large amount of research interest, the difficulties in querying by an example propel ultimate users towards text queries. Searching by text queries yields more effective and accurate results that meet the needs of the users while at the same time preserves their familiarity with the way traditional search engines operate. However, text-based image retrieval requires images to be annotated i.e. they are related to text information. Much effort has been invested on automatic image annotation methods [1], since the manual assignment of keywords (which is necessary for text-based image retrieval) is a time consuming and labour intensive procedure [2].en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Letters on Computer Vision and Image Analysis,en_US
dc.rights© 2015 Zenonas Theodosiouen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFeatures and Image Descriptorsen_US
dc.subjectImage Modellingen_US
dc.subjectClassification and Clusteringen_US
dc.subjectIndexing, Retrievalen_US
dc.titleImage retrieval: Modelling keywords via low-level featuresen_US
dc.typeArticleen_US
dc.doi10.5565/rev/elcvia.725en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMedia and Communicationsen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.5565/rev/elcvia.725en_US
dc.relation.issue3en_US
dc.relation.volume14en_US
cut.common.academicyear2014-2015en_US
dc.identifier.spage21en_US
dc.identifier.epage23en_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
crisitem.author.deptDepartment of Communication and Internet Studies-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0003-3168-2350-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
Theodosiou.pdf25.74 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

435
Last Week
0
Last month
7
checked on Jan 30, 2025

Download(s)

115
checked on Jan 30, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons