Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8964
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorGiannoulakis, Stamatios-
dc.contributor.authorTsapatsoulis, Nicolas-
dc.date.accessioned2016-12-15T11:13:25Z-
dc.date.available2016-12-15T11:13:25Z-
dc.date.issued2016-12-
dc.identifier.citationJournal of Innovation in Digital Ecosystems, 2016, vol. 3, no. 2, pp. 114–129en_US
dc.identifier.issn23526645-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8964-
dc.description.abstractImage tagging is an essential step for developing Automatic Image Annotation (AIA) methods that are based on the learning by example paradigm. However, manual image annotation, even for creating training sets for machine learning algorithms, requires hard effort and contains human judgment errors and subjectivity. Thus, alternative ways for automatically creating training examples, i.e., pairs of images and tags, are pursued. In this work, we investigate whether tags accompanying photos in the Instagram can be considered as image annotation metadata. If such a claim is proved then Instagram could be used as a very rich, easy to collect automatically, source of training data for the development of AIA techniques. Our hypothesis is that Instagram hashtags, and especially those provided by the photo owner/creator, express more accurately the content of a photo compared to the tags assigned to a photo during explicit image annotation processes like crowdsourcing. In this context, we explore the descriptive power of hashtags by examining whether other users would use the same, with the owner, hashtags to annotate an image. For this purpose 1000 Instagram images were collected and one to four hashtags, considered as the most descriptive ones for the image in question, were chosen among the hashtags used by the photo owner. An online database was constructed to generate online questionnaires containing 20 images each, which were distributed to experiment participants so they can choose the best suitable hashtag for every image according to their interpretation. Results show that an average of 66% of the participants hashtag choices coincide with those suggested by the photo owners; thus, an initial evidence towards our hypothesis confirmation can be claimed.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Innovation in Digital Ecosystemsen_US
dc.rights© Qassim Universityen_US
dc.subjectImage taggingen_US
dc.subjectMachine learningen_US
dc.subjectInstagramen_US
dc.subjectHashtagsen_US
dc.subjectImage retrievalen_US
dc.titleEvaluating the descriptive power of Instagram hashtagsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationDigiPollsen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.jides.2016.10.001en_US
dc.relation.issue2en_US
dc.relation.volume3en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage114en_US
dc.identifier.epage129en_US
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextWith Fulltext-
crisitem.journal.journalissn2352-6645-
crisitem.journal.publisherElsevier-
crisitem.author.deptLibrary and Information Services-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0003-3020-3717-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgCyprus University of Technology-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Tsapatsoulis.pdfFull text Open Access3.27 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s)

662
Last Week
0
Last month
6
checked on 6 Νοε 2024

Download(s)

2.007
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα