Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/8878
Τίτλος: | Twitter sentiment analysis for FX | Συγγραφείς: | Μανώλη, Στέφανος | Λέξεις-κλειδιά: | Δείκτης FOREX;Twitter;Οικονομικός δείκτης;Γλώσσα προγραμματισμού Python;Latent Dirichlet Allocation (LDA);Non-negative Matrix Factorization (NMF) | Advisor: | Χατζής, Σωτήριος | Ημερομηνία Έκδοσης: | 2016 | Department: | Department of Electrical Engineering, Computer Engineering and Informatics | Faculty: | Faculty of Engineering and Technology | Περίληψη: | Η συγκεκριμένη διπλωματική εργασία θα ασχοληθεί αρχικά με την εξόρυξη δεδομένων μέσα από κοινωνικά μέσα δικτύωσης που στο επίκεντρο τους έχουν τον δείκτη FOREX. Ο δείκτης FOREX ή αλλιώς FX είναι μια αγορά, στην οποία πραγματοποιούνται οι συναλλαγές των διαφόρων διεθνών συναλλαγμάτων. Ως αποτέλεσμα του τεράστιου όγκου της και της ρευστότητάς της, η αγορά FX εξελίχθηκε στη μεγαλύτερη και σημαντικότερη χρηματοπιστωτική αγορά του κόσμου. Πιο συγκεκριμένα, όπως αναφέρεται και στον τίτλο της διπλωματικής εργασίας, θα συλλεχτεί αρχικά, με την χρήση ενός API που θα δημιουργηθεί, μεγάλος όγκος δεδομένων από χρήστες του Twitter οι οποίοι σχετίζονται έμμεσα ή άμεσα με τον δείκτη FOREX. Στην συνέχεια θα επεξεργαστούν και θα ελεγχτούν ώστε να μην περιέχουν ελλιπή ή αχρείαστα δεδομένα. Με αυτό τον τρόπο θα μείνουν μόνο τα χρήσιμα δεδομένα τα οποία θα αποτελούν την σωστή πληροφορία που θα χρειαστεί για την εκπόνηση της διπλωματικής εργασίας. Αργότερα αφού συλλεχθούν και επεξεργαστούν τα δεδομένα θα πρέπει να διαμορφωθεί ανάλογα ένας υλοποιημένος αλγόριθμος ο οποίος με την κατάλληλη εκπαίδευση θα αποτελεί ένα σύστημα. Το σύστημα αυτό θα είναι σε θέση να παίρνει ως είσοδο τα επεξεργασμένα δεδομένα και ως έξοδο να κατηγοριοποιεί αυτά τα δεδομένα. Πιο συγκεκριμένα θα ασχοληθούμε με την ανάλυση συναισθημάτων μέσω των δεδομένων από το Twitter όσο αφορά τον οικονομικό δείκτη FOREX. Για την εκπόνηση της παρούσας διπλωματικής εργασίας θα χρησιμοποιηθεί η γλώσσα προγραμματισμού Python και πιο συγκεκριμένα οι δύο αλγόριθμοι ομαδοποίησης, Latent Dirichlet Allocation (LDA) και Non-negative Matrix Factorization (NMF). | URI: | https://hdl.handle.net/20.500.14279/8878 | Rights: | Απαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κατόχου των πνευματικών δικαιωμάτων | Type: | Bachelors Thesis | Affiliation: | Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Πτυχιακές Εργασίες/ Bachelor's Degree Theses |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Μανώλη Σ..pdf | 941.47 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
325
Last Week
0
0
Last month
0
0
checked on 4 Δεκ 2024
Download(s)
555
checked on 4 Δεκ 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα