Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/8878
Title: | Twitter sentiment analysis for FX | Authors: | Μανώλη, Στέφανος | Keywords: | Δείκτης FOREX;Twitter;Οικονομικός δείκτης;Γλώσσα προγραμματισμού Python;Latent Dirichlet Allocation (LDA);Non-negative Matrix Factorization (NMF) | Advisor: | Χατζής, Σωτήριος | Issue Date: | 2016 | Department: | Department of Electrical Engineering, Computer Engineering and Informatics | Faculty: | Faculty of Engineering and Technology | Abstract: | Η συγκεκριμένη διπλωματική εργασία θα ασχοληθεί αρχικά με την εξόρυξη δεδομένων μέσα από κοινωνικά μέσα δικτύωσης που στο επίκεντρο τους έχουν τον δείκτη FOREX. Ο δείκτης FOREX ή αλλιώς FX είναι μια αγορά, στην οποία πραγματοποιούνται οι συναλλαγές των διαφόρων διεθνών συναλλαγμάτων. Ως αποτέλεσμα του τεράστιου όγκου της και της ρευστότητάς της, η αγορά FX εξελίχθηκε στη μεγαλύτερη και σημαντικότερη χρηματοπιστωτική αγορά του κόσμου. Πιο συγκεκριμένα, όπως αναφέρεται και στον τίτλο της διπλωματικής εργασίας, θα συλλεχτεί αρχικά, με την χρήση ενός API που θα δημιουργηθεί, μεγάλος όγκος δεδομένων από χρήστες του Twitter οι οποίοι σχετίζονται έμμεσα ή άμεσα με τον δείκτη FOREX. Στην συνέχεια θα επεξεργαστούν και θα ελεγχτούν ώστε να μην περιέχουν ελλιπή ή αχρείαστα δεδομένα. Με αυτό τον τρόπο θα μείνουν μόνο τα χρήσιμα δεδομένα τα οποία θα αποτελούν την σωστή πληροφορία που θα χρειαστεί για την εκπόνηση της διπλωματικής εργασίας. Αργότερα αφού συλλεχθούν και επεξεργαστούν τα δεδομένα θα πρέπει να διαμορφωθεί ανάλογα ένας υλοποιημένος αλγόριθμος ο οποίος με την κατάλληλη εκπαίδευση θα αποτελεί ένα σύστημα. Το σύστημα αυτό θα είναι σε θέση να παίρνει ως είσοδο τα επεξεργασμένα δεδομένα και ως έξοδο να κατηγοριοποιεί αυτά τα δεδομένα. Πιο συγκεκριμένα θα ασχοληθούμε με την ανάλυση συναισθημάτων μέσω των δεδομένων από το Twitter όσο αφορά τον οικονομικό δείκτη FOREX. Για την εκπόνηση της παρούσας διπλωματικής εργασίας θα χρησιμοποιηθεί η γλώσσα προγραμματισμού Python και πιο συγκεκριμένα οι δύο αλγόριθμοι ομαδοποίησης, Latent Dirichlet Allocation (LDA) και Non-negative Matrix Factorization (NMF). | URI: | https://hdl.handle.net/20.500.14279/8878 | Rights: | Απαγορεύεται η δημοσίευση ή αναπαραγωγή, ηλεκτρονική ή άλλη χωρίς τη γραπτή συγκατάθεση του δημιουργού και κατόχου των πνευματικών δικαιωμάτων | Type: | Bachelors Thesis | Affiliation: | Cyprus University of Technology |
Appears in Collections: | Πτυχιακές Εργασίες/ Bachelor's Degree Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Μανώλη Σ..pdf | 941.47 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
328
Last Week
1
1
Last month
3
3
checked on Jan 5, 2025
Download(s)
567
checked on Jan 5, 2025
Google ScholarTM
Check
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.