Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8675
DC FieldValueLanguage
dc.contributor.authorLiu, X. H.-
dc.contributor.authorKyriakidis, Phaedon-
dc.contributor.authorGoodchild, Michael F.-
dc.date.accessioned2016-07-13T11:48:55Z-
dc.date.available2016-07-13T11:48:55Z-
dc.date.issued2008-03-
dc.identifier.citationInternational Journal of Geographical Information Science, 2008, vol. 22, iss. 4, pp. 431-447en_US
dc.identifier.issn13623087-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8675-
dc.description.abstractCensus population data are associated with several analytical and cartographic problems. Regression models using remote-sensing covariates have been examined to estimate urban population density, but the performance may not be satisfactory. This paper describes a kriging-based areal interpolation method, namely area-topoint residual kriging, which can be used to disaggregate the residuals remaining from regression. Compared with conventional cokriging, the area-to-point residual kriging is much simpler in that only a semivariogram model for the point residuals is required, as opposed to a set of auto- and cross-semivariogram models involving the dependent variable and all the covariates. In addition, area-to-point residual kriging explicitly accounts for any scale differences between source data and target values. The method is illustrated by disaggregating population from census units to the land-use zones within them. Comparative results for regression with and without area-to-point residual kriging show that area-to-point residual kriging can substantially improve interpolation accuracy.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Geographical Information Scienceen_US
dc.rights© Taylor & Francisen_US
dc.subjectA real interpolationen_US
dc.subjectDasymetric mappingen_US
dc.subjectKrigingen_US
dc.subjectGeostatisticsen_US
dc.subjectPopulation surfaceen_US
dc.titlePopulation density estimation using regression and area-to-point residual Krigingen_US
dc.typeArticleen_US
dc.collaborationSan Francisco State Universityen_US
dc.collaborationUniversity of Californiaen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1080/13658810701492225en_US
dc.dept.handle123456789/54en
dc.relation.issue4en_US
dc.relation.volume22en_US
cut.common.academicyear2007-2008en_US
dc.identifier.spage431en_US
dc.identifier.epage447en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1362-3087-
crisitem.journal.publisherTaylor & Francis-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

96
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

82
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

360
Last Week
0
Last month
0
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.