Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8667
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorNagle, Nicholas N.-
dc.contributor.authorSweeney, Stuart H.-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2016-07-13T11:36:33Z-
dc.date.available2016-07-13T11:36:33Z-
dc.date.issued2011-01-
dc.identifier.citationGeographical Analysis, 2011, vol. 43, no. 1, pp. 38–60en_US
dc.identifier.issn15384632-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8667-
dc.description.abstractWe present a new linear regression model for use with aggregated, small area data thatare spatially autocorrelated. Because these data are aggregates of individual-level data,we choose to model the spatial autocorrelation using a geostatistical model specifiedat the scale of the individual. The autocovariance of observed small area data is de-termined via the natural aggregation over the population. Unlike lattice-based auto-regressive approaches, the geostatistical approach is invariant to the scale of dataaggregation. We establish that this geostatistical approach also is a valid autoregressivemodel; thus, we call this approach the geostatistical autoregressive (GAR) model. Anasymptotically consistent and efficient maximum likelihood estimator is derived forthe GAR model. Finite sample evidence from simulation experiments demonstrates therelative efficiency properties of the GAR model. Furthermore, while aggregation resultsin less efficient estimates than disaggregated data, the GAR model provides the mostefficient estimates from the data that are available. These results suggest that the GARmodel should be considered as part of a spatial analyst’s toolbox when aggregated,small area data are analyzed. More important, we believe that the GAR model’s at-tention to the individual-level scale allows for a more flexible and theory-informedspecification than the existing autoregressive approaches based on an area-level spa-tial weights matrix. Because many spatial process models, both in geography and inother disciplines, are specified at the individual level, we hope that the GAR covari-ance specification will provide a vehicle for a better informed and more interdisci-plinary use of spatial regression models with area-aggregated data.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofGeographical Analysisen_US
dc.rights© The Ohio State Universityen_US
dc.subjectAreal Interpolationen_US
dc.subjectPopulation Estimationen_US
dc.subjectGeographic Mappingen_US
dc.titleA Geostatistical Linear Regression Model for Small Area Dataen_US
dc.typeArticleen_US
dc.collaborationUniversity of Tennesseeen_US
dc.collaborationUniversity of Californiaen_US
dc.collaborationUniversity of Aegeanen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1111/j.1538-4632.2010.00807.xen_US
dc.dept.handle123456789/54en
dc.relation.issue1en_US
dc.relation.volume43en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage38en_US
dc.identifier.epage60en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1538-4632-
crisitem.journal.publisherWiley-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

13
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

360
Last Week
1
Last month
26
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα