Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8637
DC FieldValueLanguage
dc.contributor.authorKavroudakis, Dimitris-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2016-07-11T11:35:47Z-
dc.date.available2016-07-11T11:35:47Z-
dc.date.issued2013-10-
dc.identifier.citationEuropean Journal of Geography, 2013, vol. 4, no. 3, pp. 38-49en_US
dc.identifier.issn17921341-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8637-
dc.description.abstractThe complexity of modern scientific research requires advanced approaches to handle and analyse rich and dynamic data. Organizations such as hospitals, hold a great number of health datasets which may consist of many individual records. Artificial Intelligence methodologies incorporate approaches for knowledge retrieval and pattern discovery, which have been proven to be useful for data analysis in various disciplines. Decision trees methods belong to knowledge discovery methodologies and use computational algorithms for the extraction of patterns from data. This work describes the development of an autonomous Decision Support System (“Dth 1.0”) for the real-time analysis of health data with the use of decision trees. The proposed system uses a patient's dataset based on the patients’ symptoms and other relevant information and prepares reports about the importance of the characteristics that determine the number of patients of a specific disease. This work presents the basic concept of decision trees, describes the design of a tree-based system and uses a virtual database to illustrate the classification of patients in a hypothetical intra-hospital case study.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEuropean Journal of Geographyen_US
dc.rights© Association of European Geographersen_US
dc.subjectDecision makingen_US
dc.subjectGeographical analysisen_US
dc.subjectArtificial intelligenceen_US
dc.subjectData miningen_US
dc.subjectHealth geographyen_US
dc.subjectDecision treesen_US
dc.titleTowards an Artificial Intelligence System for Geographical Analysis of Health Dataen_US
dc.typeArticleen_US
dc.collaborationUniversity of Aegeanen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.dept.handle123456789/54en
dc.relation.issue3en_US
dc.relation.volume4en_US
cut.common.academicyear2013-2014en_US
dc.identifier.spage38en_US
dc.identifier.epage49en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s)

335
Last Week
0
Last month
4
checked on Nov 6, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.