Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8578
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorKosmopoulos, Dimitrios I.-
dc.date.accessioned2016-07-01T09:14:26Z-
dc.date.available2016-07-01T09:14:26Z-
dc.date.issued2015-12-
dc.identifier.citation2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015, pp. 2803-2811en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8578-
dc.description.abstractUnsupervised feature learning algorithms based on convolutional formulations of independent components analysis (ICA) have been demonstrated to yield state-of-the-art results in several action recognition benchmarks. However, existing approaches do not allow for the number of latent components (features) to be automatically inferred from the data in an unsupervised manner. This is a significant disadvantage of the state-of-the-art, as it results in considerable burden imposed on researchers and practitioners, who must resort to tedious cross-validation procedures to obtain the optimal number of latent features. To resolve these issues, in this paper we introduce a convolutional nonparametric Bayesian sparse ICA architecture for overcomplete feature learning from high-dimensional data. Our method utilizes an Indian buffet process prior to facilitate inference of the appropriate number of latent features under a hybrid variational inference algorithm, scalable to massive datasets. As we show, our model can be naturally used to obtain deep unsupervised hierarchical feature extractors, by greedily stacking successive model layers, similar to existing approaches. In addition, inference for this model is completely heuristics-free, thus, it obviates the need of tedious parameter tuning, which is a major challenge most deep learning approaches are faced with. We evaluate our method on several action recognition benchmarks, and exhibit its advantages over the state-of-the-art.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rightsCopyright IEEEen_US
dc.subjectBayes methodsen_US
dc.subjectConvolutionen_US
dc.subjectFeature extractionen_US
dc.subjectImage recognitionen_US
dc.subjectIndependent component analysisen_US
dc.titleA Nonparametric Bayesian Approach Toward Stacked Convolutional Independent Component Analysisen_US
dc.typeConference Papersen_US
dc.linkhttp://pamitc.org/iccv15/en_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Patrasen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryCyprusen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceIEEE International Conference on Computer Vision (ICCV)en_US
dc.identifier.doi10.1109/ICCV.2015.321en_US
dc.dept.handle123456789/134en
cut.common.academicyear2015-2016en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

4
checked on 9 Νοε 2023

Page view(s) 50

437
Last Week
0
Last month
8
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα