Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8574
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.date.accessioned2016-07-01T07:49:14Z-
dc.date.available2016-07-01T07:49:14Z-
dc.date.issued2016-12-
dc.identifier.citationNeurocomputing, 2016, vol. 216, pp. 409-415en_US
dc.identifier.issn18728286-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8574-
dc.description.abstractDevising generative models that allow for inferring low dimensional latent fea- ture representations of high-dimensional observations is a significant problem in statistical machine learning. Factor analysis (FA) is a well-established lin- ear latent variable scheme addressing this problem by modeling the covariances between the elements of multivariate observations under a set of linear assump- tions. FA is closely related to principal components analysis (PCA), and might be considered as a generalization of both PCA and its probabilistic version, PPCA. Recently, the invention of Gaussian process latent variable models (GP- LVMs) has given rise to a whole new family of latent variable modeling schemes that generalize FA under a nonparametric Bayesian inference framework. In this work, we examine generalization of FA models under a different Bayesian inference perspective. Specifically, we propose a large-margin formulation of FA under the maximum entropy discrimination (MED) framework. The MED framework integrates the large-margin principle with Bayesian posterior infer- ence in an elegant and computationally efficient fashion, allowing to leverage existing high-performance solvers for convex optimization problems. We devise efficient mean-field inference algorithms for our model, and exhibit its advan- tages by evaluating it in a number of diverse application scenarios, dealing with high-dimensional data classification and reconstruction.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNeurocomputingen_US
dc.rights© Elsevieren_US
dc.subjectLarge-margin modelingen_US
dc.subjectMaximum-entropy discriminationen_US
dc.subjectMean-field inferenceen_US
dc.subjectLatent variable representationen_US
dc.subjectFactor analyzersen_US
dc.titleMaximum Entropy Discrimination Factor Analyzersen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.neucom.2016.08.007en_US
dc.dept.handle123456789/134en
dc.relation.volume216en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage409en_US
dc.identifier.epage415en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0925-2312-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

444
Last Week
0
Last month
1
checked on Jan 5, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.