Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8207
Title: A latent variable Gaussian process model with Pitman–Yor process priors for multiclass classification
Authors: Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Keywords: Gaussian process;Pitman–Yor process;Mixture model
Issue Date: 23-Nov-2013
Source: Neurocomputing, 2013, vol. 120, pp. 482–489
Volume: 120
Start page: 482
End page: 489
Journal: Neurocomputing 
Abstract: Gaussian processes (GPs) constitute one of the most important Bayesian machine learning approaches. Several researchers have considered postulating mixtures of Gaussian processes as a means of dealing with non-stationary covariance functions, discontinuities, multi-modality, and overlapping output signals. In existing works, mixtures of Gaussian processes are based on the introduction of a gating function defined over the space of model input variables. This way, each postulated mixture component Gaussian process is effectively restricted in a limited subset of the input space. Additionally, the applicability of these models is limited to regression tasks. In this paper, for the first time in the literature, we devise a Gaussian process mixture model especially suitable for multiclass classification applications: We consider a GP classification scheme the prior distribution of which is a fully generative nonparametric Bayesian model with power-law behavior, generating Gaussian processes over the whole input space of the learned task. We provide an efficient algorithm for model inference, based on the variational Bayesian framework, and exhibit its efficacy using benchmark and real-world classification datasets.
URI: https://hdl.handle.net/20.500.14279/8207
ISSN: 09252312
DOI: 10.1016/j.neucom.2013.04.029
Rights: © Elsevier
Type: Article
Affiliation : Cyprus University of Technology 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Page view(s)

428
Last Week
1
Last month
1
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.