Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/8202
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.date.accessioned2016-01-18T12:02:45Z-
dc.date.available2016-01-18T12:02:45Z-
dc.date.issued2014-
dc.identifier.citation28th AAAI Conference on Artificial Intelligence, 2014, Québec, Canada, 27–31 Julyen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/8202-
dc.description.abstractCollaborative filtering algorithms generally rely on the assumption that user preference patterns remain stationary. However, real-world relational data are seldom stationary. User preference patterns may change over time, giving rise to the requirement of designing collaborative filtering systems capable of detecting and adapting to preference pattern shifts. Motivated by this observation, in this paper we propose a dynamic Bayesian probabilistic matrix factorization model, designed for modeling time-varying distributions. Formulation of our model is based on imposition of a dynamic hierarchical Dirichlet process (dHDP) prior over the space of probabilistic matrix factorization models to capture the time-evolving statistical properties of modeled sequential relational datasets. We develop a simple Markov Chain Monte Carlo sampler to perform inference. We present experimental results to demonstrate the superiority of our temporal model.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.subjectCollaborative filtering algorithmsen_US
dc.subjectCollaborative filtering systemsen_US
dc.subjectBayesian probabilisticen_US
dc.subjectDynamic hierarchical Dirichlet processen_US
dc.titleDynamic bayesian probabilistic matrix factorizationen_US
dc.typeConference Papersen_US
dc.linkhttps://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8136/8802en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.reviewPeer Revieweden
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.relation.conferenceAAAI Conference on Artificial Intelligenceen_US
dc.dept.handle123456789/134en
cut.common.academicyear2013-2014en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 50

420
Last Week
0
Last month
7
checked on Dec 17, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.