Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4555
DC FieldValueLanguage
dc.contributor.authorTantele, Eliaen
dc.contributor.authorOnoufriou, Toulaen
dc.contributor.otherΤαντελέ, Έλια-
dc.contributor.otherΟνουφρίου, Τούλα-
dc.date.accessioned2013-02-20T12:27:05Zen
dc.date.accessioned2013-05-17T10:36:29Z-
dc.date.accessioned2015-12-09T13:59:25Z-
dc.date.available2013-02-20T12:27:05Zen
dc.date.available2013-05-17T10:36:29Z-
dc.date.available2015-12-09T13:59:25Z-
dc.date.issued2010en
dc.identifier.citation5th International conference on bridge maintenance, safety and management, 2010, Philadelphiaen
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4555-
dc.description.abstractThe authors have developed an optimization genetic algorithm (GA) methodology that enables the optimization of preventative maintenance (PM) strategies applied to reinforced concrete (RC) bridges. The PM strategies are used to delay/prevent the reinforcement corrosion of bridge beams due to contamination from chloride ions and maintain the reliability profile within acceptable limits and minimum whole life costing. A key element in predicting optimum PM strategies using the GA methodology is the accuracy of estimating the degree of deterioration of an element. The use of Bayesian Updating improves the reliability of this estimation by enabling the updating of the probability of failure based on data from inspection and the adjustment if necessary of the timing of subsequent PM interventions. The case studies presented demonstrate the application and the effectiveness of the proposed updated GA methodology and also examine the influence of applying updating at different time frames in reaching the optimum PM maintenance strategy.en
dc.formatpdfen
dc.language.isoenen
dc.rights© 2010 Taylor & Francis Groupen
dc.subjectBuilt environment seriesen
dc.subjectReinforced concreteen
dc.subjectBeams, Concreteen
dc.titleOptimization of life-cycle preventative maintenance strategies using genetic algorithm and Bayesian Updatingen
dc.typeConference Papersen
dc.linkhttp://iabmas.atlss.lehigh.edu/index.htmen
dc.collaborationCyprus University of Technology-
dc.subject.categoryCivil Engineering-
dc.countryCyprus-
dc.subject.fieldEngineering and Technology-
dc.dept.handle123456789/148en
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-2666-8044-
crisitem.author.orcid0000-0002-3361-1567-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 20

476
Last Week
0
Last month
8
checked on Dec 22, 2024

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.