Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4414
DC FieldValueLanguage
dc.contributor.authorSorelli, Luca-
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorUlm, Franz Josef-
dc.contributor.authorToutlemonde, François-
dc.date.accessioned2009-05-28T12:24:07Zen
dc.date.accessioned2013-05-17T10:30:56Z-
dc.date.accessioned2015-12-09T12:08:17Z-
dc.date.available2009-05-28T12:24:07Zen
dc.date.available2013-05-17T10:30:56Z-
dc.date.available2015-12-09T12:08:17Z-
dc.date.issued2008-
dc.identifier.citationCement and Concrete Research, 2008, vol. 38, no. 12, pp. 1447-1456en_US
dc.identifier.issn00088846-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4414-
dc.description.abstractAdvances in engineering the microstructure of cementitious composites have led to the development of fiber reinforced Ultra High Performance Concretes (UHPC). The scope of this paper is twofold, first to characterize the nano-mechanical properties of the phases governing the UHPC microstructure by means of a novel statistical nanoindentation technique; then to upscale those nanoscale properties, by means of continuum micromechanics, to the macroscopic scale of engineering applications. In particular, a combined investigation of nanoindentation, scanning electron microscope (SEM) and X-ray Diffraction (XRD) indicates that the fiber-matrix transition zone is relatively defect free. On this basis, a four-level multiscale model with defect free interfaces allows to accurately determine the composite stiffness from the measured nano-mechanical properties. Besides evidencing the dominant role of high density calcium silicate hydrates and the stiffening effect of residual clinker, the suggested model may become a useful tool for further optimizing cement-based engineered composites.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofCement and Concrete Researchen_US
dc.rights© Elsevieren_US
dc.subjectMicrostructureen_US
dc.subjectNanoindentationen_US
dc.subjectMicromechanicsen_US
dc.subjectHigh perfomance concreteen_US
dc.subjectFiber reinforcementen_US
dc.titleThe nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniquesen_US
dc.typeArticleen_US
dc.collaborationMassachusetts Institute of Technologyen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Paris-Esten_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.reviewpeer reviewed-
dc.countryUnited Statesen_US
dc.countryCyprusen_US
dc.countryFranceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.cemconres.2008.09.002en_US
dc.dept.handle123456789/141en
dc.relation.issue12en_US
dc.relation.volume38en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage1447en_US
dc.identifier.epage1456en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0008-8846-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

417
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

375
Last Week
1
Last month
11
checked on Oct 29, 2023

Page view(s)

437
Last Week
0
Last month
33
checked on Mar 13, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.