Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4413
DC FieldValueLanguage
dc.contributor.authorConstantinides, Georgios-
dc.contributor.authorVandamme, Matthieu-
dc.contributor.authorTweedie, Catherine A.-
dc.contributor.authorUlm, Franz Josef-
dc.contributor.authorVliet, Krystyn J Van-
dc.date.accessioned2013-03-06T16:34:06Zen
dc.date.accessioned2013-05-17T10:30:39Z-
dc.date.accessioned2015-12-09T12:08:16Z-
dc.date.available2013-03-06T16:34:06Zen
dc.date.available2013-05-17T10:30:39Z-
dc.date.available2015-12-09T12:08:16Z-
dc.date.issued2011-10-
dc.identifier.citationJournal of Materials Research, 2012, vol. 27, no. 1, pp. 302-312en_US
dc.identifier.issn20445326-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4413-
dc.description.abstractHere we quantify the time-dependent mechanical properties of a linear viscoelastoplastic material under contact loading. For contact load relaxation, we showed that the relaxation modulus can be measured independently of concurrent plasticity exhibited during the loading phase. For indentation creep, we showed that the rate of change of the contact creep compliance L̇(t) can be measured independently of any plastic deformation exhibited during loading through L̇(t) = 2a(t)ḣ(t)/P max, where a(t) is the contact radius, h(t) is the displacement of the contact probe, and P max is the constant applied load during the creep phase. These analytical relations were compared with numerical simulations of conical indentation creep for a viscoelastoplastic material and validated against sharp indentation creep experiments conducted on polystyrene. The derived relations enable extraction of viscoelastic material characteristics, even if sharp probes confer concurrent plasticity, applicable for a general axisymmetric contact probe geometry and a general time-independent plasticity.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Materials Researchen_US
dc.rights© Cambridge University Pressen_US
dc.subjectPlasticityen_US
dc.subjectPolymersen_US
dc.subjectElastic analysis (Engineering)en_US
dc.titleQuantifying Plasticity-independent Creep Compliance and Relaxation of Viscoelastoplastic Materials Under Contact Loadingen_US
dc.typeArticleen_US
dc.collaborationMassachusetts Institute of Technologyen_US
dc.collaborationUniversite Parisen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryMaterials Engineeringen_US
dc.journalsSubscriptionen_US
dc.reviewpeer reviewed-
dc.countryUnited Statesen_US
dc.countryFranceen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1557/jmr.2011.302en_US
dc.dept.handle123456789/141en
dc.relation.issue1en_US
dc.relation.volume27en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage302en_US
dc.identifier.epage312en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-1979-5176-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

67
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

54
Last Week
0
Last month
2
checked on Oct 29, 2023

Page view(s) 20

502
Last Week
0
Last month
3
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.