Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/4379
Title: | Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting | Authors: | Panagiotopoulos, Nikolaos T. Diamanti, Evmorfia K. Baikousi, Maria Kordatos, Evangelos Matikas, Theodore E. Gournis, Dimitrios Patsalas, Panos Koutsokeras, Loukas E. |
Major Field of Science: | Engineering and Technology | Field Category: | Materials Engineering | Keywords: | Materials science;Engineering;Catalysts;Carbon;Nanotubes;Chemical vapor deposition;Light absorption;Nanocomposites;Pulsed laser deposition | Issue Date: | 5-Nov-2012 | Source: | ACS Nano, 2012, vol.6, no.12, pp.10475-10485 | Volume: | 6 | Issue: | 12 | Start page: | 10475 | End page: | 10485 | Link: | https://pubs.acs.org/doi/full/10.1021/nn304531k | Journal: | ACS Nano | Abstract: | A novel two-step approach for preparing carbon nanotube (CNT) systems, exhibiting an extraordinary combination of functional properties, is presented. It is based upon nanocomposite films consisting of metal (Me = Ni, Fe, Mo, Sn) nanoparticles embedded into diamond-like carbon (DLC). The main concept behind this approach is that DLC inhibits the growth of Me, resulting in the formation of small nanospheres instead of layers or extended grains. In the second step, DLC:Me substrates were used as catalyst templates for the growth of CNTs by the thermal chemical vapor deposition (T-CVD) process. X-ray photoelectron spectroscopy (XPS) has shown that at the T-CVD temperature of 700 C DLC is completely graphitized and NiC is formed, making DLC:Ni a very effective catalyst for CNT growth. The catalyst layers and the CNT systems have been characterized with a wide range of analytical techniques such as Auger electron spectroscopy and X-ray photoelectron spectroscopy (AES/XPS), X-ray diffraction, reflectivity and scattering, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical and electrical testing. The produced CNTs are of excellent quality, without needing any further purification, durable, firmly attached to the substrate, and of varying morphology depending on the density of catalyst nanoparticles. The produced CNTs exhibit exceptional properties, such as super-hydrophobic surfaces (contact angle up to 165) and exceptionally low optical reflection (reflectivity <10-4) in the entirety of the visible range. The combination of the functional properties makes these CNT systems promising candidates for solar thermal harvesting, as it is demonstrated by solar simulation experiments | URI: | https://hdl.handle.net/20.500.14279/4379 | DOI: | 10.1021/nn304531k | Rights: | Copyright © 2012 American Chemical Society | Type: | Article | Affiliation : | Cyprus University of Technology University of Ioannina |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
87
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
83
Last Week
0
0
Last month
1
1
checked on Oct 29, 2023
Page view(s)
530
Last Week
1
1
Last month
0
0
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.