Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4332
DC FieldValueLanguage
dc.contributor.authorSouliotis, Manolis-
dc.contributor.authorKalogirou, Soteris A.-
dc.contributor.authorTripanagnostopoulos, Yiannis-
dc.date.accessioned2009-05-25T10:05:07Zen
dc.date.accessioned2013-05-17T10:29:58Z-
dc.date.accessioned2015-12-09T12:07:47Z-
dc.date.available2009-05-25T10:05:07Zen
dc.date.available2013-05-17T10:29:58Z-
dc.date.available2015-12-09T12:07:47Z-
dc.date.issued2009-05-
dc.identifier.citationRenewable Energy, 2009, vol. 34, no. 5, pp. 1333-1339en_US
dc.identifier.issn09601481-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4332-
dc.description.abstractA study, in which a suitable artificial neural network (ANN) and TRNSYS are combined in order to predict the performance of an Integrated Collector Storage (ICS) prototype, is presented. Experimental data that have been collected from outdoor tests of an ICS solar water heater with cylindrical water storage tank inside a CPC reflector trough were used to train the ANN. The ANN is then used through the Excel interface (Type 62) in TRNSYS to model the annual performance of the system by running the model with the values of a typical meteorological year for Athens, Greece. In this way the specific capabilities of both approaches are combined, i.e., use of the radiation processing and modelling power of TRNSYS together with the “black box” modelling approach of ANNs. The details of the calculation steps of both methods that aim to perform an accurate prediction of the system performance are presented and it is shown that this new method can be used effectively for such predictions.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRenewable Energyen_US
dc.rights© Elsevieren_US
dc.subjectSolar water heatersen_US
dc.subjectIntegrated Collector Storage (ICS) systemen_US
dc.subjectArtificial Neural Networks (ANN)en_US
dc.subjectTRNSYSen_US
dc.titleModelling of an ICS solar water heater using artificial neural networks and TRNSYSen_US
dc.typeArticleen_US
dc.collaborationUniversity of Patrasen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.journalsSubscriptionen_US
dc.reviewpeer reviewed-
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.renene.2008.09.007en_US
dc.dept.handle123456789/141en
dc.relation.issue5en_US
dc.relation.volume34en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage1333en_US
dc.identifier.epage1339en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0960-1481-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

71
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

63
Last Week
0
Last month
0
checked on Oct 31, 2023

Page view(s)

568
Last Week
0
Last month
0
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.