Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4298
DC FieldValueLanguage
dc.contributor.authorKalamkarov, Alexander L.-
dc.contributor.authorHassan, Essmat M.-
dc.contributor.authorGeorgiades, Tasos-
dc.contributor.otherΓεωργιάδης, Τάσος-
dc.date.accessioned2013-03-05T12:52:47Zen
dc.date.accessioned2013-05-17T10:30:36Z-
dc.date.accessioned2015-12-09T12:07:27Z-
dc.date.available2013-03-05T12:52:47Zen
dc.date.available2013-05-17T10:30:36Z-
dc.date.available2015-12-09T12:07:27Z-
dc.date.issued2010-01-
dc.identifier.citationJournal of Nanostructured Polymers and Nanocomposites, 2010, vol. 6, no. 1, pp. 12-20en_US
dc.identifier.issn17904439-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4298-
dc.description.abstractA micromechanical model for 3D composite structures with an embedded regular grid of generally orthotropic reinforcements is developed and applied to various anisotropic structures to calculate effective elastic properties. The model is based on application of the multiscale asymptotic homogenization technique, and it allows application to composite materials of various scales, including 3D grid-reinforced nanostructures. The model provides flexibility in the design of such structures with desirable properties by changing material and/or geometric parameters. It is illustrated by means of several examples of practical importance including single walled carbon nanotubes, 3D grid-reinforced nanocomposite materials, and 3D grid-reinforced orthotropic composite structures with different arrangements of generally orthotropic reinforcements. The explicit formulae for Young's and Shear moduli of single walled carbon nanotubes are derived in terms of the pertinent material and geometric characteristics. It is noted that the reinforcements can be in the form of covalent bonds such as the ones that exist between carbon atoms in carbon nanotubes or other nanostructures.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Nanostructured Polymers and Nanocompositesen_US
dc.rights© NANOFUN POLYen_US
dc.subjectAnisotropyen_US
dc.subjectMicromechanicsen_US
dc.subjectNanostructuresen_US
dc.subjectReinforced plasticsen_US
dc.titleMicromechanical modeling of 3D grid-reinforced composite structures and nanocompositesen_US
dc.typeArticleen_US
dc.collaborationDalhousie Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.journalsSubscriptionen_US
dc.reviewPeer reviewed-
dc.countryCanadaen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.dept.handle123456789/141en
dc.relation.issue1en_US
dc.relation.volume6en_US
cut.common.academicyear2010-2011en_US
dc.identifier.spage12en_US
dc.identifier.epage20en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.journal.journalissn1790-4439-
crisitem.journal.publisherADCOTEC-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8984-1011-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

Page view(s) 50

420
Last Week
0
Last month
2
checked on Feb 8, 2025

Google ScholarTM

Check


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.