Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/4276
Τίτλος: | Application of artificial neural networks for the prediction of a 20-kWp grid-connected photovoltaic plant power output | Συγγραφείς: | Mellit, Adel Massi Pavan, Alessandro Kalogirou, Soteris A. |
metadata.dc.contributor.other: | Καλογήρου, Σωτήρης Α. | Major Field of Science: | Engineering and Technology | Field Category: | Environmental Engineering | Λέξεις-κλειδιά: | Neural networks (Computer science);Power-plants;Soft computing | Ημερομηνία Έκδοσης: | 2011 | Πηγή: | Soft computing in green and renewable energy systems, 2011, Pages 261-283 | Περίληψη: | Due to various seasonal, hourly and daily changes in climate, it is relatively difficult to find a suitable analytic model for predicting the output power of Grid-Connected Photovoltaic (GCPV) plants. In this chapter, a simplified artificial neural network configuration is used for estimating the power produced by a 20kWp GCPV plant installed at Trieste, Italy. A database of experimentally measured climate (irradiance and air temperature) and electrical data (power delivered to the grid) for nine months is used. Four Multilayer-perceptron (MLP) models have been investigated in order to estimate the energy produced by the GCPV plant in question. The best MLP model has as inputs the solar irradiance and module temperature. The results show that good effectiveness is obtained between the measured and predicted power produced by the 20kWp GCPV plant. The developed model has been compared with different existing regression polynomial models in order to show its effectiveness. Three performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the final PV system yield, reference yield and performance ratio | URI: | https://hdl.handle.net/20.500.14279/4276 | ISBN: | 978-3-642-22175-0 (print) 978-3-642-22176-7 (online) |
DOI: | 10.1007/978-3-642-22176-7_10 | Rights: | © Springer-Verlag Berlin Heidelberg 2011 | Type: | Book Chapter | Affiliation: | Jijel University University of Trieste Cyprus University of Technology |
Εμφανίζεται στις συλλογές: | Κεφάλαια βιβλίων/Book chapters |
CORE Recommender
SCOPUSTM
Citations
50
7
checked on 9 Νοε 2023
Page view(s) 50
617
Last Week
0
0
Last month
1
1
checked on 4 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα