Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/4217
Title: | The Effect of Air Flow on a Building Integrated PV-panel | Authors: | Kalogirou, Soteris A. Aresti, Lazaros Christodoulides, Paul Florides, Georgios A. |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Keywords: | Photovoltaics;Building integration;Convection heat transfer;Thermal modeling | Issue Date: | Dec-2014 | Source: | Procedia IUTAM, 2014, no. 11, pp. 89-97 | Volume: | 11 | Start page: | 89 | End page: | 97 | Journal: | Procedia IUTAM | Abstract: | Photovoltaic (PV) materials are increasingly being incorporated into the construction of new buildings for generating electrical power and are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. Also photovoltaic systems may be retro it - integrated into existing buildings. The advantage of integrated photovoltaic systems over the non-integrated systems is that their initial cost can be offset by reducing the cost of the materials and labo r that would normally be spent to construct the part of the building that is replaced. This study examines the effect of air flow on a building integrated PV-panel. It is shown that in summer, the maximum temperature of a PV-panel of 3 m in height is experienced for an east facing surface and reaches 77 °C early in the mornin. The maximum temperature for a south facing panel is 51 °C and that for a west fac ng surface is 58 °C. The air velocity in the air-gap between the PV-panel and the building wall is an important factor. It is shown that for an air-gap width of 0.02 m, an air velocity of 0.5 m s–1 can lower the mean temperature of the panel from 77 °C to 39 °C, allowing for a significant increase in its efficiency. Finally the air-gap width is varied for a steady elocity of 0.2 m s–1, and it is shown that the temperature of the building wall varies from 23.7 °C for a width of 0.01 m to 20 °C for a width of 0.05 m. | Description: | Presented at IUTAM Symposium on Nonlinear Interfacial Wave Phenomena from the Micro- to the Macro-Scale, 2013, 14–18 April, Limassol, Cyprus | ISSN: | 22109838 | DOI: | 10.1016/j.piutam.2014.01.051 | Rights: | © Elsevier | Type: | Article | Affiliation : | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2210983814000522-main.pdf | Fulltext | 422.24 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
17
checked on Nov 6, 2023
Page view(s) 5
881
Last Week
0
0
Last month
3
3
checked on Dec 3, 2024
Download(s)
104
checked on Dec 3, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.