Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4146
DC FieldValueLanguage
dc.contributor.authorDemiris, Yiannis-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.contributor.otherΔεμίρης, Γιάννης-
dc.date.accessioned2013-02-19T15:46:00Zen
dc.date.accessioned2013-05-17T10:30:09Z-
dc.date.accessioned2015-12-09T11:30:40Z-
dc.date.available2013-02-19T15:46:00Zen
dc.date.available2013-05-17T10:30:09Z-
dc.date.available2015-12-09T11:30:40Z-
dc.date.issued2012-05-
dc.identifier.citationPattern recognition, 2012, vol. 45, no. 11, pp. 3985–3996en_US
dc.identifier.issn00313203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4146-
dc.description.abstractIn this work, we propose a novel approach towards sequential data modeling that leverages the strengths of hidden Markov models and echo-state networks (ESNs) in the context of non-parametric Bayesian inference approaches. We introduce a non-stationary hidden Markov model, the time-dependent state transition probabilities of which are driven by a high-dimensional signal that encodes the whole history of the modeled observations, namely the state vector of a postulated observations-driven ESN reservoir. We derive an efficient inference algorithm for our model under the variational Bayesian paradigm, and we examine the efficacy of our approach considering a number of sequential data modeling applicationsen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPattern recognitionen_US
dc.rights© 2012 Elsevier. All rights reserved.*
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectPattern recognitionen_US
dc.subjectComputer scienceen_US
dc.subjectMarkov processesen_US
dc.subjectDirichlet processen_US
dc.subjectReservoiren_US
dc.subjectHidden Markov modelen_US
dc.titleA Reservoir-driven non-stationary hidden markov modelen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsHybrid Open Accessen_US
dc.reviewpeer reviewed-
dc.countryCyprusen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.patcog.2012.04.018en_US
dc.dept.handle123456789/134en
dc.relation.issue11en_US
dc.relation.volume45en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage3985en_US
dc.identifier.epage3996en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn0031-3203-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

484
Last Week
1
Last month
2
checked on Dec 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons