Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4121
DC FieldValueLanguage
dc.contributor.authorRamanujam, Rohit Sunkam-
dc.contributor.authorLin, Bill-
dc.contributor.authorLi-Shiuan, Peh-
dc.contributor.authorSoteriou, Vassos-
dc.date.accessioned2009-12-22T09:12:00Zen
dc.date.accessioned2013-05-17T10:30:42Z-
dc.date.accessioned2015-12-09T11:30:20Z-
dc.date.available2009-12-22T09:12:00Zen
dc.date.available2013-05-17T10:30:42Z-
dc.date.available2015-12-09T11:30:20Z-
dc.date.issued2009-01-
dc.identifier.citationComputer Architecture Letters. 2009, vol. 8, no. 1, pp. 21 - 24en_US
dc.identifier.issn15566064-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4121-
dc.description.abstractMicroarchitectural configurations of buffers in routers have a significant impact on the overall performance of an on-chip network (NoC). This buffering can be at the inputs or the outputs of a router, corresponding to an input-buffered router (IBR) or an output-buffered router (OBR). OBRs are attractive because they have higher throughput and lower queuing delays under high loads than IBRs. However, a direct implementation of OBRs requires a router speedup equal to the number of ports, making such a design prohibitive given the aggressive clocking and power budgets of most NoC applications. In this letter, we propose a new router design that aims to emulate an OBR practically based on a distributed shared-buffer (DSB) router architecture. We introduce innovations to address the unique constraints of NoCs, including efficient pipelining and novel flow control. Our DSB design can achieve significantly higher bandwidth at saturation, with an improvement of up to 20% when compared to a state-of-the-art pipelined IBR with the same amount of buffering, and our proposed microarchitecture can achieve up to 94% of the ideal saturation throughput.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputer Architecture Lettersen_US
dc.rights© IEEEen_US
dc.subjectComputer architectureen_US
dc.subjectElectric network topologyen_US
dc.subjectNetwork architectureen_US
dc.subjectVideo amplifiersen_US
dc.titleA High-Throughput Distributed Shared-Buffer NoC Routeren_US
dc.typeArticleen_US
dc.collaborationPrinceton Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Californiaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.reviewpeer reviewed-
dc.countryCyprusen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/L-CA.2009.5en_US
dc.dept.handle123456789/134en
dc.relation.issue1en_US
dc.relation.volume8en_US
cut.common.academicyear2008-2009en_US
dc.identifier.spage21en_US
dc.identifier.epage24en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1556-6056-
crisitem.journal.publisherIEEE-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-2818-0459-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

43
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

25
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s)

435
Last Week
2
Last month
1
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons