Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4105
DC FieldValueLanguage
dc.contributorCyprus-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.date.accessioned2013-02-19T09:40:09Zen
dc.date.accessioned2013-05-17T10:30:24Z-
dc.date.accessioned2015-12-09T11:29:47Z-
dc.date.available2013-02-19T09:40:09Zen
dc.date.available2013-05-17T10:30:24Z-
dc.date.available2015-12-09T11:29:47Z-
dc.date.issued2013-06-
dc.identifier.citationPattern recognition, 2013, vol. 46, no. 6, pp. 1595–1603en_US
dc.identifier.issn00313203-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4105-
dc.description.abstractIn this work, we propose a Markov random field-regulated Pitman–Yor process (MRF-PYP) prior for nonparametric clustering of data with spatial interdependencies. The MRF-PYP is constructed by imposing a Pitman–Yor process over the distribution of the latent variables that allocate data points to clusters (model states), the discount hyperparameter of which is regulated by an additionally postulated simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. Further, based on the stick-breaking construction of the Pitman–Yor process, we derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an unsupervised image segmentation application using a real-world dataset. We show that our approach completely outperforms related methods from the field of Bayesian nonparametrics, including the recently proposed infinite hidden Markov random field model and the Dirichlet process prioren_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofPattern recognitionen_US
dc.rights© Elsevieren_US
dc.subjectPattern recognitionen_US
dc.subjectMarkov random fieldsen_US
dc.subjectComputer scienceen_US
dc.titleA markov random field-regulated pitman-yor process prior for spatially constrained data clusteringen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.reviewpeer reviewed-
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.patcog.2012.11.026en_US
dc.dept.handle123456789/134en
dc.relation.issue6en_US
dc.relation.volume46en_US
cut.common.academicyear2012-2013en_US
dc.identifier.spage1595en_US
dc.identifier.epage1603en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0031-3203-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 50

9
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

407
Last Week
0
Last month
1
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.