Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/4056
DC FieldValueLanguage
dc.contributor.authorTsapatsoulis, Nicolas-
dc.contributor.authorLanitis, Andreas-
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.contributor.otherΛανίτης, Ανδρέας-
dc.date.accessioned2013-02-13T14:06:34Zen
dc.date.accessioned2013-05-17T10:05:03Z-
dc.date.accessioned2015-12-09T10:52:04Z-
dc.date.available2013-02-13T14:06:34Zen
dc.date.available2013-05-17T10:05:03Z-
dc.date.available2015-12-09T10:52:04Z-
dc.date.issued2010-
dc.identifier.citation5th international workshop on semantic media adaptation and personalization, SMAP, 9-10 December, Limassolen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4056-
dc.description.abstractIn automatic user profiling a number of features related to the user of a system are extracted in an attempt to deduct key information that can be used for adapting the interface and content of computer applications. In this context the identity, emotion, age and head orientation can provide important cues that enable efficient customization of the content of an application. In order to develop automated user profiling applications facial features are often used for providing the required information related to the user. A key issue that arises is the applicability of different facial features for different user profiling tasks. In this paper we present a generalized framework that can be used for quantifying the invariance of different facial features for different classification tasks assisting in that way the implementation of efficient adaptive user profiling in computer applications. Preliminary experimental results demonstrate the potential of the proposed method in selecting the most useful features for different tasksen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 2010 IEEEen_US
dc.subjectComputer scienceen_US
dc.subjectBiometric identificationen_US
dc.subjectSemanticsen_US
dc.subjectHuman-computer interactionen_US
dc.subjectClassificationen_US
dc.subjectDatabasesen_US
dc.titleA general framework for selecting biometric features for automatic user profilingen_US
dc.typeConference Papersen_US
dc.doihttps://doi.org/10.1109/SMAP.2010.5706843en_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryArtsen_US
dc.countryCyprusen_US
dc.subject.fieldHumanitiesen_US
dc.identifier.doi10.1109/SMAP.2010.5706843en
dc.dept.handle123456789/126en
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Communication and Media Studies-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 50

435
Last Week
0
Last month
3
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.