Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/4008
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorTsapatsoulis, Nicolasen
dc.contributor.authorVogiatzis, Dimitriosen
dc.contributor.otherΤσαπατσούλης, Νικόλας-
dc.date.accessioned2013-02-14T13:08:19Zen
dc.date.accessioned2013-05-17T10:05:07Z-
dc.date.accessioned2015-12-09T10:48:32Z-
dc.date.available2013-02-14T13:08:19Zen
dc.date.available2013-05-17T10:05:07Z-
dc.date.available2015-12-09T10:48:32Z-
dc.date.issued2008en
dc.identifier.citation3rd international workshop on semantic media adaptation and personalization, SMAP, 15-16 December 2008, Pragueen
dc.identifier.urihttps://hdl.handle.net/20.500.14279/4008-
dc.description.abstractRecommender systems, in the collaborative filtering variation, are popular tools used to drive users out of information clutter, by letting them select "interesting" items based on the preferences of similarly minded users. In such a system as more users come in to evaluate items (be they information pieces, products or otherwise), a network of users starts to be formed. In this paper we are interested in the dynamics of such a network, in particular we investigate if there is a hidden law that captures the essence of such networks irrespective of their size. The discovery of such a law would allow, among other usages, generation of synthetic data sets, realistic enough to be used for simulation purposes. Furthermore, it would be useful for information-seeking activities such as locating known experts or influential users on a particular subject. Similar work in related fields suggested the existence of power-laws, which seem to be ubiquitous. However, in our work we did not detect the presence of such a law, instead we discovered an exponential relationship between the nodes of a graph representing users, and edges representing similarity between users. In particular the logarithm of the degree of node is linearly related to the ranking of the node in a decreasing order. The above conclusion is justified by extended experiments on two versions of the movie lens data set (one comprised 100,000 user evaluations, while the other comprised 1,000,0000 evaluations)en
dc.formatpdfen
dc.language.isoenen
dc.rights© 2008 IEEEen
dc.subjectComputer scienceen
dc.subjectRecommender systemsen
dc.subjectSemanticsen
dc.subjectAlgebraen
dc.subjectInformation storage and retrieval systemsen
dc.subjectInformation theoryen
dc.titleModeling user networks in recommender systemsen
dc.typeConference Papersen
dc.collaborationCyprus University of Technology-
dc.collaborationNCSR Demokritos-
dc.subject.categoryArts-
dc.countryCyprus-
dc.countryGreece-
dc.subject.fieldHumanities-
dc.identifier.doi10.1109/SMAP.2008.35en
dc.dept.handle123456789/126en
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Communication and Marketing-
crisitem.author.facultyFaculty of Communication and Media Studies-
crisitem.author.orcid0000-0002-6739-8602-
crisitem.author.parentorgFaculty of Communication and Media Studies-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

2
checked on 9 Νοε 2023

Page view(s) 50

537
Last Week
0
Last month
1
checked on 6 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα