Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3996
DC FieldValueLanguage
dc.contributor.authorDraganova, Chrisinaen
dc.contributor.authorChristodoulou, Chrisen
dc.contributor.authorLanitis, Andreas-
dc.contributor.otherΛανίτης, Ανδρέας-
dc.date.accessioned2009-12-21T11:17:45Zen
dc.date.accessioned2013-05-17T10:05:10Z-
dc.date.accessioned2015-12-09T10:48:02Z-
dc.date.available2009-12-21T11:17:45Zen
dc.date.available2013-05-17T10:05:10Z-
dc.date.available2015-12-09T10:48:02Z-
dc.date.issued2009en
dc.identifier.citation11th International Conference on Engineering Applications of Neural Networks, Communications in Computer and Information Science, Springer, Vol 43, pp 401-408, 2009en
dc.identifier.isbn9783642039683 (Print)en
dc.identifier.isbn9783642039690 (Online)en
dc.identifier.issn1865-0929 (Print)en
dc.identifier.issn1865-0937 (Online)en
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3996-
dc.description.abstractIn this study we aim to define a mapping function that relates the general index value among a set of shares to the prices of individual shares. In more general terms this is problem of defining the relationship between multivariate data distributions and a specific source of variation within these distributions where the source of variation in question represents a quantity of interest related to a particular problem domain. In this respect we aim to learn a complex mapping function that can be used for mapping different values of the quantity of interest to typical novel samples of the distribution. In our investigation we compare the performance of standard neural network based methods like Multilayer Perceptrons (MLPs) and Radial Basis Functions (RBFs) as well as Mixture Density Networks (MDNs) and a latent variable method, the General Topographic Mapping (GTM). According to the results, MLPs and RBFs outperform MDNs and the GTM for this one-to-many mapping problem.en
dc.formatpdfen
dc.language.isoenen
dc.rights© Springeren
dc.subjectStock Price Predictionen
dc.subjectNeural networksen
dc.subjectMultivariate Statisticsen
dc.subjectOne-to-Many Mappingen
dc.titleIsolating Stock Prices Variation with Neural Networksen
dc.typeConference Papersen
dc.collaborationCyprus University of Technology-
dc.subject.categoryArts-
dc.countryCyprus-
dc.subject.fieldHumanities-
dc.identifier.doi10.1007/978-3-642-03969-0_37en
dc.dept.handle123456789/126en
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 50

540
Last Week
0
Last month
3
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons