Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3951
DC FieldValueLanguage
dc.contributor.authorJayne, Chrisina-
dc.contributor.authorChristodoulou, Chris-
dc.contributor.authorLanitis, Andreas-
dc.date.accessioned2013-02-14T12:41:02Zen
dc.date.accessioned2013-05-17T09:55:54Z-
dc.date.accessioned2015-12-09T10:25:35Z-
dc.date.available2013-02-14T12:41:02Zen
dc.date.available2013-05-17T09:55:54Z-
dc.date.available2015-12-09T10:25:35Z-
dc.date.issued2011-09-
dc.identifier.citationNeural Computing and Applications, 2011, vol. 20, no. 6, pp. 775-785en_US
dc.identifier.issn14333058-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3951-
dc.description.abstractAn investigation of the applicability of neural network-based methods in predicting the values of multiple parameters, given the value of a single parameter within a particular problem domain is presented. In this context, the input parameter may be an important source of variation that is related with a complex mapping function to the remaining sources of variation within a multivariate distribution. The definition of the relationship between the variables of a multivariate distribution and a single source of variation allows the estimation of the values of multiple variables given the value of the single variable, addressing in that way an ill-conditioned one-to-many mapping problem. As part of our investigation, two problem domains are considered: predicting the values of individual stock shares, given the value of the general index, and predicting the grades received by high school pupils, given the grade for a single course or the average grade. With our work, the performance of standard neural network-based methods and in particular multilayer perceptrons (MLPs), radial basis functions (RBFs), mixture density networks (MDNs) and a latent variable method, the general topographic mapping (GTM), is compared. According to the results, MLPs and RBFs outperform MDNs and the GTM for these one-to-many mapping problems.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rights© Springeren_US
dc.subjectExam grades predictionen_US
dc.subjectMultivariate statisticsen_US
dc.subjectNeural networksen_US
dc.subjectOne-to-many mappingen_US
dc.subjectStock price predictionen_US
dc.titleNeural network methods for one-to-many multi-valued mapping problemsen_US
dc.typeArticleen_US
dc.collaborationLondon Metropolitan Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryArtsen_US
dc.journalsSubscriptionen_US
dc.reviewPeer Reviewed-
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.subject.fieldHumanitiesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s00521-010-0483-4en_US
dc.dept.handle123456789/126en
dc.relation.issue6en_US
dc.relation.volume20en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage775en_US
dc.identifier.epage785en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s) 10

549
Last Week
0
Last month
3
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.