Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/3938
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorLanitis, Andreas-
dc.date.accessioned2009-05-28T12:26:02Zen
dc.date.accessioned2013-05-17T09:55:43Z-
dc.date.accessioned2015-12-09T10:25:10Z-
dc.date.available2009-05-28T12:26:02Zen
dc.date.available2013-05-17T09:55:43Z-
dc.date.available2015-12-09T10:25:10Z-
dc.date.issued2008-
dc.identifier.citationEURASIP Journal on Advances in Signal Processing, 2008, vol. 2008, Article ID 239480en_US
dc.identifier.issn16876172-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3938-
dc.description.abstractAutomatic age-progression is the process of modifying an image showing the face of a person in order to predict his/her future facial appearance. In this paper, we compare the performance of two age-progression methodologies reported in the literature against two novel approaches to the problem. In particular, we compare the performance of a method based on age prototypes, a method based on aging functions defined in a low-dimensional parametric model space, and two methods based on the distributions of samples belonging to different individuals and different age groups. Quantitative comparative results reported in the paper are based on dedicated performance evaluation metrics that assess the ability of each method to produce accurate predictions of the future/previous facial appearance of subjects. The framework proposed in this paper promotes the idea of a standardized performance evaluation protocol for age-progression methodologies, using images from a publicly available image database.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofEURASIP Journal on Applied Signal Processingen_US
dc.rights© Andreas Lanitis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.subjectAutomatic age-progressionen_US
dc.subjectOpen access publishingen_US
dc.titleComparative evaluation of automatic age-progression methodologiesen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryArtsen_US
dc.journalsOpen Accessen_US
dc.reviewPeer Reviewed-
dc.countryCyprusen_US
dc.subject.fieldHumanitiesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1155/2008/239480en_US
dc.dept.handle123456789/126en
dc.relation.volume2008en_US
cut.common.academicyear2007-2008en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1687-6180-
crisitem.journal.publisherSpringer Nature-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
la.pdfOpen Access1.39 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

70
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

48
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

768
Last Week
0
Last month
31
checked on 14 Μαρ 2025

Download(s) 5

461
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα