Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33656
Τίτλος: Emerging Research Topics Identification Using Temporal Graph Neural Networks
Συγγραφείς: Charalampous, Antonis 
Djouvas, Constantinos 
Tsapatsoulis, Nicolas 
Kouzaridi, Emily 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Machine Learning;Graph Neural Networks;Research Trends;Network Analysis;Community Detection
Ημερομηνία Έκδοσης: 1-Ιαν-2024
Πηγή: IFIP Advances in Information and Communication Technology, 2024, vol.713 IFIPAICT, pp. 192 - 205
Volume: 713 IFIPAICT
Start page: 192
End page: 205
Περιοδικό: IFIP Advances in Information and Communication Technology 
Conference: 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations 
Περίληψη: The dynamic landscape of research necessitates effective methods for the timely identification of emerging research topics, a critical pursuit for researchers and decision makers in both governmental and industrial spheres. Traditional approaches to this challenge have predominantly relied on retrospective analyses, limiting their applicability in real world scenarios where proactive foresight is paramount. This study addresses this constraint through the introduction of a novel methodology for the future prediction of emerging research topics, employing temporal graph neural networks. Our proposed framework revolves around the construction of co-word graphs, serving as input for our innovative machine learning model designed to forecast keyword frequencies in forthcoming time periods. To delineate emerging themes, keywords undergo clustering via a graph entropy algorithm that are subsequently sorted in terms of their “emergence score”. To validate the efficacy of our methodology, we apply it to forecast emerging research topics for the year 2022. The results showcase the potential of our approach, offering valuable insights into the trajectory of research themes poised to gain prominence in the near future.
URI: https://hdl.handle.net/20.500.14279/33656
ISBN: [9783031632181]
ISSN: 18684238
DOI: 10.1007/978-3-031-63219-8_15
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

80
Last Week
7
Last month
13
checked on 7 Απρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα