Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33636
Τίτλος: DataPoll: A Tool Facilitating Big Data Research in Social Sciences
Συγγραφείς: Charalampous, Antonis 
Djouvas, Constantinos 
Christodoulou, Christos 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Big data in social sciences;Big data systems;Computational methods;Computational social science;Online platforms;Social computing
Ημερομηνία Έκδοσης: 1-Ιαν-2024
Περιοδικό: IEEE Transactions on Computational Social Systems 
Περίληψη: The computational analysis of big data has revolutionized social science research, offering unprecedented insights into societal behaviors and trends through digital data from online sources. However, existing tools often face limitations such as technical complexity, single-source dependency, and a narrow range of analytical capabilities, hindering accessibility and effectiveness. This article introduces DataPoll, an end-to-end big data analysis platform designed to democratize computational social science research. DataPoll simplifies data collection, analysis, and visualization, making advanced analytics accessible to researchers of diverse expertise. It supports multisource data integration, innovative analytical features, and interactive dashboards for exploratory and comparative analyses. By fostering collaboration and enabling the integration of new data sources and analysis methods, DataPoll represents a significant advancement in the field. A comprehensive case study on the Ukrainian - Russian conflict demonstrates its capabilities, showcasing how DataPoll can yield actionable insights into complex social phenomena. This tool empowers researchers to harness the potential of big data for impactful and inclusive research.
URI: https://hdl.handle.net/20.500.14279/33636
ISSN: 2329924X
23737476
DOI: 10.1109/TCSS.2024.3506582
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
DataPoll_A_Tool.pdf1.98 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

158
Last Week
2
Last month
14
checked on 5 Δεκ 2025

Download(s)

130
checked on 5 Δεκ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons